-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplot_result.py
152 lines (124 loc) · 5.42 KB
/
plot_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for plotting the results."""
from absl import app
from absl import flags
import numpy as np
import os
import matplotlib.pyplot as plt
from privateFM.utils import EasyDict, read_from_file
from privateFM.utils import get_default_delta
from privateFM.FM_simulate import make_estimate, set_k_p_eta, get_debias
FLAGS = flags.FLAGS
flags.DEFINE_float('epsilon', -1.0, 'DP epsilon. -1 for non-private.')
flags.DEFINE_float('gamma', 1.0, 'Accuracy parameter.')
flags.DEFINE_string('res_dir', './res', 'Directory to write results.')
def plot_figure(ax1, x, ys, xlabel=None, ylabel=None, title=None, xscale='log', yscale=None, ylim=None):
"""
Args:
x: x axis value
ys: a dict of y values to plot. If y is 2d, plot error bar
"""
params = {'legend.handlelength': 1,
'grid.alpha': 1,
'grid.color': "#cccccc",
'grid.linestyle': '--',
'legend.fontsize': 14,
}
plt.rcParams.update(params)
markersize = 5
x = np.array(x)
plt.setp(ax1, xticks=x, xticklabels=['2^{}'.format(int(np.log2(xx))) for xx in x])
shapes = 'o^+*x'
line_styles = ['--', '-', '-.', ':']
labels = list(ys.keys())
for idx, label in enumerate(labels):
y = np.array(ys[label])
style = shapes[idx % len(shapes)] + line_styles[idx % len(line_styles)]
if y.ndim == 1:
ax1.plot(x, y, style, markersize=markersize, label=labels[idx])
elif y.ndim == 2:
ax1.plot(x, y[:,0], style, markersize=markersize, label=labels[idx])
ax1.fill_between(x, y[:,0] - y[:,1], y[:,0] + y[:,1], alpha=0.2, linewidth=3, capstyle='round', linestyle='-')
else:
raise ValueError('y has {} dimensions'.format(y.ndim))
ax1.set_title(title)
ax1.set_xlabel(xlabel)
ax1.set_ylabel(ylabel)
ax1.grid(linestyle='--')
if xscale:
assert xscale in ['log', 'linear']
ax1.set_xscale(xscale)
if yscale:
ax1.set_yscale(yscale)
if ylim:
ax1.set_ylim(ylim)
return ax1
def process_estimation(estimation, k):
"""Get some statistics of the estimations."""
estimation = np.array(estimation)
est_mean = np.mean(estimation)
est_std = np.std(estimation)
error = np.abs(estimation - k)
mre_mean = np.mean(error / k)
mre_std = np.std(error / k)
return ((mre_mean, mre_std), (est_mean, est_std))
def process_data(data, k, config, factor=0):
"""Read data, make estimation and return statistics of estimations."""
Is = data['I'].values()
assert len(Is) == 100
param = EasyDict({'config': config, 'k_p': set_k_p_eta(config)[0], 'factor':factor})
est_quantile = [make_estimate(I, 'quantile', param) for I in Is]
est_geom = [make_estimate(I, 'mean_geom', param) for I in Is]
est_harmo = [make_estimate(I, 'mean_harmo', param) for I in Is]
return (process_estimation(est, k) for est in [est_quantile, est_geom, est_harmo])
def main(unused_argv):
epsilon = FLAGS.epsilon
gamma = FLAGS.gamma
ks = [2**i for i in range(12, 21)]
ms = [1024, 4096, 32768]
quantile_factor = 1/12
morePhantom = False
est_qs, est_gs, est_hs = {}, {}, {}
mre_qs, mre_gs, mre_hs = {}, {}, {}
for m in ms:
label = 'm={}'.format(m)
est_qs[label], est_gs[label], est_hs[label] = [], [], []
mre_qs[label], mre_gs[label], mre_hs[label] = [], [], []
for k in ks:
config = EasyDict(m=m, gamma=gamma, epsilon=epsilon, delta=get_default_delta(k, epsilon), morePhantom=morePhantom)
data = read_from_file(k, config, FLAGS.res_dir)
(mre_q, est_q), (mre_g, est_g), (mre_h, est_h) = process_data(data, k, config, quantile_factor)
est_qs[label].append(est_q)
est_gs[label].append(est_g)
est_hs[label].append(est_h)
mre_qs[label].append(mre_q)
mre_gs[label].append(mre_g)
mre_hs[label].append(mre_h)
ms = np.array(ms)
figsize=(12, 3)
ylim = (0, 0.07)
plt.style.use('seaborn-colorblind')
fig, axs = plt.subplots(nrows=1, ncols=3, constrained_layout=True, figsize=figsize)
for i, (ests, mres) in enumerate([(est_qs, mre_qs), (est_gs, mre_gs), (est_hs, mre_hs)]):
ylabel = r'mean relative error' if i == 0 else None
axs[i] = plot_figure(axs[i], ks, mres, xlabel=r'$F_0$', ylabel=ylabel, ylim=ylim)
plt.setp(axs[i], xticks=ks, xticklabels=['$2^{'+str(int(np.log2(xx)))+'}$' for xx in ks])
handles, labels = axs[-1].get_legend_handles_labels()
fig.legend(handles, labels, loc='upper center', ncol=ms.size, framealpha=1) # put legend in the top center
fig_name = os.path.join(FLAGS.res_dir, 'mre_m_eps{}_gamma{}{}'.format(float(epsilon), gamma, ('_morePhantom' if morePhantom else ''))) + '.pdf'
print(fig_name)
fig.savefig(fig_name, bbox_inches='tight')
if __name__ == '__main__':
app.run(main)