-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathtable.rs
940 lines (848 loc) · 29 KB
/
table.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/* Copyright 2021 Google LLC
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This code is almost entirely based on TODO from TODO. The original
* program was licensed under the MIT license. We have modified it for
* for two reasons:
*
* 1. The original implementation used u32 indices to point into the
* suffix array. This is smaller and fairly cache efficient, but here
* in the Real World we have to work with Big Data and our datasets
* are bigger than 2^32 bytes. So we have to work with u64 instead.
*
* 2. The original implementation had a utf8 interface. This is very
* convenient if you're working with strings, but we are working with
* byte arrays almost exclusively, and so just cut out the strings.
*
* When the comments below contradict these two statements, that's why.
*/
use std::borrow::Cow;
use std::fmt;
use std::iter;
use std::slice;
use std::u64;
use self::SuffixType::{Ascending, Descending, Valley};
/// A suffix table is a sequence of lexicographically sorted suffixes.
///
/// The lifetimes `'s` and `'t` (respectively) refer to the text and suffix
/// indices when borrowed.
///
/// This is distinct from a suffix array in that it *only* contains
/// suffix indices. It has no "enhanced" information like the inverse suffix
/// table or least-common-prefix lengths (LCP array). This representation
/// limits what you can do (and how fast), but it uses very little memory
/// (4 bytes per character in the text).
///
/// # Construction
///
/// Suffix array construction is done in `O(n)` time and in `O(kn)` space,
/// where `k` is the number of unique characters in the text. (More details
/// below.) The specific algorithm implemented is from
/// [(Nong et al., 2009)](https://local.ugene.unipro.ru/tracker/secure/attachment/12144/Linear%20Suffix%20Array%20Construction%20by%20Almost%20Pure%20Induced-Sorting.pdf),
/// but I actually used the description found in
/// [(Shrestha et al., 2014)](http://bib.oxfordjournals.org/content/15/2/138.full.pdf),
/// because it is much more accessible to someone who is not used to reading
/// algorithms papers.
///
/// The main thrust of the algorithm is that of "reduce and conquer." Namely,
/// it reduces the problem of finding lexicographically sorted suffixes to a
/// smaller subproblem, and solves it recursively. The subproblem is to find
/// the suffix array of a smaller string, where that string is composed by
/// naming contiguous regions of the original text. If there are any duplicate
/// names, then the algorithm proceeds recursively. If there are no duplicate
/// names (base case), then the suffix array of the subproblem is already
/// computed. In essence, this "inductively sorts" suffixes of the original
/// text with several linear scans over the text. Because of the number of
/// linear scans, the performance of construction is heavily tied to cache
/// performance (and this is why `u64` is used to represent the suffix index
/// instead of a `u64`).
///
/// The space usage is roughly `6` bytes per character. (The optimal bound is
/// `5` bytes per character, although that may be for a small constant
/// alphabet.) `4` bytes comes from the suffix array itself. The extra `2`
/// bytes comes from storing the suffix type of each character (`1` byte) and
/// information about bin boundaries, where the number of bins is equal to
/// the number of unique characters in the text. This doesn't formally imply
/// another byte of overhead, but in practice, the alphabet can get quite large
/// when solving the subproblems mentioned above (even if the alphabet of the
/// original text is very small).
#[derive(Clone, Eq, PartialEq)]
pub struct SuffixTable<'s, 't> {
text: Cow<'s, [u8]>,
table: Cow<'t, [u64]>,
}
impl<'s, 't> SuffixTable<'s, 't> {
/// Creates a new suffix table for `text` in `O(n)` time and `O(kn)`
/// space, where `k` is the size of the alphabet in the text.
///
/// The table stores either `S` or a `&S` and a lexicographically sorted
/// list of suffixes. Each suffix is represented by a 32 bit integer and
/// is a **byte index** into `text`.
///
/// # Panics
///
/// Panics if the `text` contains more than `2^32 - 1` bytes. This
/// restriction is mostly artificial; there's no fundamental reason why
/// suffix array construction algorithm can't use a `u64`. Nevertheless,
/// `u64` was chosen for performance reasons. The performance of the
/// construction algorithm is highly dependent on cache performance, which
/// is degraded with a bigger number type. `u64` strikes a nice balance; it
/// gets good performance while allowing most reasonably sized documents
/// (~4GB).
pub fn new<S>(text: S) -> SuffixTable<'s, 't>
where
S: Into<Cow<'s, [u8]>>,
{
let text = text.into();
let table = Cow::Owned(sais_table(&text));
SuffixTable { text: text, table: table }
}
/// The same as `new`, except it runs in `O(n^2 * logn)` time.
///
/// This is a simple naive implementation that sorts the suffixes. This
/// tends to have lower overhead, so it can be useful when creating lots
/// of suffix tables for small strings.
#[doc(hidden)]
#[allow(dead_code)]
pub fn new_naive<S>(text: S) -> SuffixTable<'s, 't>
where
S: Into<Cow<'s, [u8]>>,
{
let text = text.into();
let table = Cow::Owned(naive_table(&text));
SuffixTable { text: text, table: table }
}
/// Creates a new suffix table from an existing list of lexicographically
/// sorted suffix indices.
///
/// Note that the invariant that `table` must be a suffix table of `text`
/// is not checked! If it isn't, this will cause other operations on a
/// suffix table to fail in weird ways.
///
/// This fails if the number of characters in `text` does not equal the
/// number of suffixes in `table`.
#[allow(dead_code)]
pub fn from_parts<S, T>(text: S, table: T) -> SuffixTable<'s, 't>
where
S: Into<Cow<'s, [u8]>>,
T: Into<Cow<'t, [u64]>>,
{
let (text, table) = (text.into(), table.into());
assert_eq!(text.len(), table.len());
SuffixTable { text: text, table: table }
}
/// Extract the parts of a suffix table.
///
/// This is useful to avoid copying when the suffix table is part of an
/// intermediate computation.
pub fn into_parts(self) -> (Cow<'s, [u8]>, Cow<'t, [u64]>) {
(self.text, self.table)
}
/// Computes the LCP array.
#[allow(dead_code)]
pub fn lcp_lens(&self) -> Vec<u64> {
let mut inverse = vec![0u64; self.text.len()];
for (rank, &sufstart) in self.table().iter().enumerate() {
inverse[sufstart as usize] = rank as u64;
}
lcp_lens_quadratic(self.text(), self.table())
// Broken on Unicode text for now. ---AG
// lcp_lens_linear(self.text(), self.table(), &inverse)
}
/// Return the suffix table.
#[inline]
pub fn table(&self) -> &[u64] {
&self.table
}
/// Return the text.
#[inline]
pub fn text(&self) -> &[u8] {
&self.text
}
/// Returns the number of suffixes in the table.
///
/// Alternatively, this is the number of *bytes* in the text.
#[inline]
#[allow(dead_code)]
pub fn len(&self) -> usize {
self.table.len()
}
/// Returns `true` iff `self.len() == 0`.
#[inline]
#[allow(dead_code)]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the suffix at index `i`.
#[inline]
#[allow(dead_code)]
pub fn suffix(&self, i: usize) -> &[u8] {
&self.text[self.table[i] as usize..]
}
/// Returns the suffix bytes starting at index `i`.
#[inline]
#[allow(dead_code)]
pub fn suffix_bytes(&self, i: usize) -> &[u8] {
&self.text[self.table[i] as usize..]
}
/// Returns true if and only if `query` is in text.
///
/// This runs in `O(mlogn)` time, where `m == query.len()` and
/// `n == self.len()`. (As far as this author knows, this is the best known
/// bound for a plain suffix table.)
///
/// You should prefer this over `positions` when you only need to test
/// existence (because it is faster).
///
/// # Example
///
/// Build a suffix array of some text and test existence of a substring:
///
/// ```rust
/// use suffix::SuffixTable;
///
/// let sa = SuffixTable::new("The quick brown fox.");
/// assert!(sa.contains("quick"));
/// ```
#[allow(dead_code)]
pub fn contains(&self, query: &[u8]) -> bool {
query.len() > 0
&& self
.table
.binary_search_by(|&sufi| {
self.text[sufi as usize..]
.iter()
.take(query.len())
.cmp(query.iter())
})
.is_ok()
}
/// Returns an unordered list of positions where `query` starts in `text`.
///
/// This runs in `O(mlogn)` time, where `m == query.len()` and
/// `n == self.len()`. (As far as this author knows, this is the best known
/// bound for a plain suffix table.)
///
/// Positions are byte indices into `text`.
///
/// If you just need to test existence, then use `contains` since it is
/// faster.
///
/// # Example
///
/// Build a suffix array of some text and find all occurrences of a
/// substring:
///
/// ```rust
/// use suffix::SuffixTable;
///
/// let sa = SuffixTable::new("The quick brown fox was very quick.");
/// assert_eq!(sa.positions("quick"), &[4, 29]);
/// ```
#[allow(dead_code)]
pub fn positions(&self, query: &[u8]) -> &[u64] {
// We can quickly decide whether the query won't match at all if
// it's outside the range of suffixes.
if self.text.len() == 0
|| query.len() == 0
|| (query < self.suffix_bytes(0)
&& !self.suffix_bytes(0).starts_with(query))
|| query > self.suffix_bytes(self.len() - 1)
{
return &[];
}
// The below is pretty close to the algorithm on Wikipedia:
//
// http://en.wikipedia.org/wiki/Suffix_array#Applications
//
// The key difference is that after we find the start index, we look
// for the end by finding the first occurrence that doesn't start
// with `query`. That becomes our upper bound.
let start = binary_search(&self.table, |&sufi| {
query <= &self.text[sufi as usize..]
});
let end = start
+ binary_search(&self.table[start..], |&sufi| {
!self.text[sufi as usize..].starts_with(query)
});
// Whoops. If start is somehow greater than end, then we've got
// nothing.
if start > end {
&[]
} else {
&self.table[start..end]
}
}
}
impl<'s, 't> fmt::Debug for SuffixTable<'s, 't> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "\n-----------------------------------------")?;
writeln!(f, "SUFFIX TABLE")?;
for (rank, &sufstart) in self.table.iter().enumerate() {
writeln!(
f,
"suffix[{}] {}",
rank,
sufstart,
)?;
}
writeln!(f, "-----------------------------------------")
}
}
// #[allow(dead_code)]
// fn lcp_lens_linear(text: &str, table: &[u64], inv: &[u64]) -> Vec<u64> {
// // This algorithm is bunk because it doesn't work on Unicode. See comment
// // in the code below.
//
// // This is a linear time construction algorithm taken from the first
// // two slides of:
// // http://www.cs.helsinki.fi/u/tpkarkka/opetus/11s/spa/lecture10.pdf
// //
// // It does require the use of the inverse suffix array, which makes this
// // O(n) in space. The inverse suffix array gives us a special ordering
// // with which to compute the LCPs.
// let mut lcps = vec![0u64; table.len()];
// let mut len = 0u64;
// for (sufi2, &rank) in inv.iter().enumerate() {
// if rank == 0 {
// continue
// }
// let sufi1 = table[(rank - 1) as usize];
// len += lcp_len(&text[(sufi1 + len) as usize..],
// &text[(sufi2 as u64 + len) as usize..]);
// lcps[rank as usize] = len;
// if len > 0 {
// // This is an illegal move because `len` is derived from `text`,
// // which is a Unicode string. Subtracting `1` here assumes every
// // character is a single byte in UTF-8, which is obviously wrong.
// // TODO: Figure out how to get LCP lengths in linear time on
// // UTF-8 encoded strings.
// len -= 1;
// }
// }
// lcps
// }
#[allow(dead_code)]
fn lcp_lens_quadratic(text: &[u8], table: &[u64]) -> Vec<u64> {
// This is quadratic because there are N comparisons for each LCP.
// But it is done in constant space.
// The first LCP is always 0 because of the definition:
// LCP_LENS[i] = lcp_len(suf[i-1], suf[i])
let mut lcps = vec![0u64; table.len()];
for (i, win) in table.windows(2).enumerate() {
lcps[i + 1] =
lcp_len(&text[win[0] as usize..], &text[win[1] as usize..]);
}
lcps
}
#[allow(dead_code)]
fn lcp_len(a: &[u8], b: &[u8]) -> u64 {
a.iter().zip(b.iter()).take_while(|(ca, cb)| ca == cb).count() as u64
}
#[allow(dead_code)]
fn naive_table(text: &[u8]) -> Vec<u64> {
assert!(text.len() <= u64::MAX as usize);
let mut table = vec![0u64; text.len()];
for i in 0..table.len() {
table[i] = i as u64;
}
table.sort_by(|&a, &b| text[a as usize..].cmp(&text[b as usize..]));
table
}
fn sais_table<'s>(text: &'s [u8]) -> Vec<u64> {
assert!(text.len() <= u64::MAX as usize);
let mut sa = vec![0u64; text.len()];
let mut stypes = SuffixTypes::new(text.len() as u64);
let mut bins = Bins::new();
sais(&mut *sa, &mut stypes, &mut bins, &Utf8(text));
sa
}
fn sais<T>(sa: &mut [u64], stypes: &mut SuffixTypes, bins: &mut Bins, text: &T)
where
T: Text,
<<T as Text>::IdxChars as Iterator>::Item: IdxChar,
{
// Instead of working out edge cases in the code below, just allow them
// to assume >=2 characters.
match text.len() {
0 => return,
1 => {
sa[0] = 0;
return;
}
_ => {}
}
for v in sa.iter_mut() {
*v = 0;
}
stypes.compute(text);
bins.find_sizes(text.char_indices().map(|c| c.idx_char().1));
bins.find_tail_pointers();
// Insert the valley suffixes.
for (i, c) in text.char_indices().map(|v| v.idx_char()) {
if stypes.is_valley(i as u64) {
bins.tail_insert(sa, i as u64, c);
}
}
// Now find the start of each bin.
bins.find_head_pointers();
// Insert the descending suffixes.
let (lasti, lastc) = text.prev(text.len());
if stypes.is_desc(lasti) {
bins.head_insert(sa, lasti, lastc);
}
for i in 0..sa.len() {
let sufi = sa[i];
if sufi > 0 {
let (lasti, lastc) = text.prev(sufi);
if stypes.is_desc(lasti) {
bins.head_insert(sa, lasti, lastc);
}
}
}
// ... and the find the end of each bin.
bins.find_tail_pointers();
// Insert the ascending suffixes.
for i in (0..sa.len()).rev() {
let sufi = sa[i];
if sufi > 0 {
let (lasti, lastc) = text.prev(sufi);
if stypes.is_asc(lasti) {
bins.tail_insert(sa, lasti, lastc);
}
}
}
// Find and move all wstrings to the beginning of `sa`.
let mut num_wstrs = 0u64;
for i in 0..sa.len() {
let sufi = sa[i];
if stypes.is_valley(sufi) {
sa[num_wstrs as usize] = sufi;
num_wstrs += 1;
}
}
// This check is necessary because we don't have a sentinel, which would
// normally guarantee at least one wstring.
if num_wstrs == 0 {
num_wstrs = 1;
}
let mut prev_sufi = 0u64; // the first suffix can never be a valley
let mut name = 0u64;
// We set our "name buffer" to be max u64 values. Since there are at
// most n/2 wstrings, a name can never be greater than n/2.
for i in num_wstrs..(sa.len() as u64) {
sa[i as usize] = u64::MAX;
}
for i in 0..num_wstrs {
let cur_sufi = sa[i as usize];
if prev_sufi == 0 || !text.wstring_equal(stypes, cur_sufi, prev_sufi) {
name += 1;
prev_sufi = cur_sufi;
}
// This divide-by-2 trick only works because it's impossible to have
// two wstrings start at adjacent locations (they must at least be
// separated by a single descending character).
sa[(num_wstrs + (cur_sufi / 2)) as usize] = name - 1;
}
// We've inserted the lexical names into the latter half of the suffix
// array, but it's sparse. so let's smush them all up to the end.
let mut j = sa.len() as u64 - 1;
for i in (num_wstrs..(sa.len() as u64)).rev() {
if sa[i as usize] != u64::MAX {
sa[j as usize] = sa[i as usize];
j -= 1;
}
}
// If we have fewer names than wstrings, then there are at least 2
// equivalent wstrings, which means we need to recurse and sort them.
if name < num_wstrs {
let split_at = sa.len() - (num_wstrs as usize);
let (r_sa, r_text) = sa.split_at_mut(split_at);
sais(&mut r_sa[..num_wstrs as usize], stypes, bins, &LexNames(r_text));
stypes.compute(text);
} else {
for i in 0..num_wstrs {
let reducedi = sa[((sa.len() as u64) - num_wstrs + i) as usize];
sa[reducedi as usize] = i;
}
}
// Re-calibrate the bins by finding their sizes and the end of each bin.
bins.find_sizes(text.char_indices().map(|c| c.idx_char().1));
bins.find_tail_pointers();
// Replace the lexical names with their corresponding suffix index in the
// original text.
let mut j = sa.len() - (num_wstrs as usize);
for (i, _) in text.char_indices().map(|v| v.idx_char()) {
if stypes.is_valley(i as u64) {
sa[j] = i as u64;
j += 1;
}
}
// And now map the suffix indices from the reduced text to suffix
// indices in the original text. Remember, `sa[i]` yields a lexical name.
// So all we have to do is get the suffix index of the original text for
// that lexical name (which was made possible in the loop above).
//
// In other words, this sets the suffix indices of only the wstrings.
for i in 0..num_wstrs {
let sufi = sa[i as usize];
sa[i as usize] = sa[(sa.len() as u64 - num_wstrs + sufi) as usize];
}
// Now zero out everything after the wstrs.
for i in num_wstrs..(sa.len() as u64) {
sa[i as usize] = 0;
}
// Insert the valley suffixes and zero out everything else..
for i in (0..num_wstrs).rev() {
let sufi = sa[i as usize];
sa[i as usize] = 0;
bins.tail_insert(sa, sufi, text.char_at(sufi));
}
// Now find the start of each bin.
bins.find_head_pointers();
// Insert the descending suffixes.
let (lasti, lastc) = text.prev(text.len());
if stypes.is_desc(lasti) {
bins.head_insert(sa, lasti, lastc);
}
for i in 0..sa.len() {
let sufi = sa[i];
if sufi > 0 {
let (lasti, lastc) = text.prev(sufi);
if stypes.is_desc(lasti) {
bins.head_insert(sa, lasti, lastc);
}
}
}
// ... and find the end of each bin again.
bins.find_tail_pointers();
// Insert the ascending suffixes.
for i in (0..sa.len()).rev() {
let sufi = sa[i];
if sufi > 0 {
let (lasti, lastc) = text.prev(sufi);
if stypes.is_asc(lasti) {
bins.tail_insert(sa, lasti, lastc);
}
}
}
}
struct SuffixTypes {
types: Vec<SuffixType>,
}
#[derive(Clone, Copy, Debug, Eq)]
enum SuffixType {
Ascending,
Descending,
Valley,
}
impl SuffixTypes {
fn new(num_bytes: u64) -> SuffixTypes {
SuffixTypes { types: vec![SuffixType::Ascending; num_bytes as usize] }
}
fn compute<'a, T>(&mut self, text: &T)
where
T: Text,
<<T as Text>::IdxChars as Iterator>::Item: IdxChar,
{
let mut chars = text.char_indices().map(|v| v.idx_char()).rev();
let (mut lasti, mut lastc) = match chars.next() {
None => return,
Some(t) => t,
};
self.types[lasti] = Descending;
for (i, c) in chars {
if c < lastc {
self.types[i] = Ascending;
} else if c > lastc {
self.types[i] = Descending;
} else {
self.types[i] = self.types[lasti].inherit();
}
if self.types[i].is_desc() && self.types[lasti].is_asc() {
self.types[lasti] = Valley;
}
lastc = c;
lasti = i;
}
}
#[inline]
fn ty(&self, i: u64) -> SuffixType {
self.types[i as usize]
}
#[inline]
fn is_asc(&self, i: u64) -> bool {
self.ty(i).is_asc()
}
#[inline]
fn is_desc(&self, i: u64) -> bool {
self.ty(i).is_desc()
}
#[inline]
fn is_valley(&self, i: u64) -> bool {
self.ty(i).is_valley()
}
#[inline]
fn equal(&self, i: u64, j: u64) -> bool {
self.ty(i) == self.ty(j)
}
}
impl SuffixType {
#[inline]
fn is_asc(&self) -> bool {
match *self {
Ascending | Valley => true,
_ => false,
}
}
#[inline]
fn is_desc(&self) -> bool {
if let Descending = *self {
true
} else {
false
}
}
#[inline]
fn is_valley(&self) -> bool {
if let Valley = *self {
true
} else {
false
}
}
fn inherit(&self) -> SuffixType {
match *self {
Valley => Ascending,
_ => *self,
}
}
}
impl PartialEq for SuffixType {
#[inline]
fn eq(&self, other: &SuffixType) -> bool {
(self.is_asc() && other.is_asc())
|| (self.is_desc() && other.is_desc())
}
}
struct Bins {
alphas: Vec<u64>,
sizes: Vec<u64>,
ptrs: Vec<u64>,
}
impl Bins {
fn new() -> Bins {
Bins {
alphas: Vec::with_capacity(10_000),
sizes: Vec::with_capacity(10_000),
ptrs: Vec::new(), // re-allocated later, no worries
}
}
fn find_sizes<I>(&mut self, chars: I)
where
I: Iterator<Item = u64>,
{
self.alphas.clear();
for size in self.sizes.iter_mut() {
*size = 0;
}
for c in chars {
self.inc_size(c);
if self.size(c) == 1 {
self.alphas.push(c);
}
}
self.alphas.sort();
let ptrs_len = self.alphas[self.alphas.len() - 1] + 1;
self.ptrs = vec![0u64; ptrs_len as usize];
}
fn find_head_pointers(&mut self) {
let mut sum = 0u64;
for &c in self.alphas.iter() {
self.ptrs[c as usize] = sum;
sum += self.size(c);
}
}
fn find_tail_pointers(&mut self) {
let mut sum = 0u64;
for &c in self.alphas.iter() {
sum += self.size(c);
self.ptrs[c as usize] = sum - 1;
}
}
#[inline]
fn head_insert(&mut self, sa: &mut [u64], i: u64, c: u64) {
let ptr = &mut self.ptrs[c as usize];
sa[*ptr as usize] = i;
*ptr += 1;
}
#[inline]
fn tail_insert(&mut self, sa: &mut [u64], i: u64, c: u64) {
let ptr = &mut self.ptrs[c as usize];
sa[*ptr as usize] = i;
if *ptr > 0 {
*ptr -= 1;
}
}
#[inline]
fn inc_size(&mut self, c: u64) {
if c as usize >= self.sizes.len() {
self.sizes.resize(1 + (c as usize), 0);
}
self.sizes[c as usize] += 1;
}
#[inline]
fn size(&self, c: u64) -> u64 {
self.sizes[c as usize]
}
}
/// Encapsulates iteration and indexing over text.
///
/// This enables us to expose a common interface between a `String` and
/// a `Vec<u64>`. Specifically, a `Vec<u64>` is used for lexical renaming.
trait Text {
/// An iterator over characters.
///
/// Must be reversible.
type IdxChars: Iterator + DoubleEndedIterator;
/// The length of the text.
fn len(&self) -> u64;
/// The character previous to the byte index `i`.
fn prev(&self, i: u64) -> (u64, u64);
/// The character at byte index `i`.
fn char_at(&self, i: u64) -> u64;
/// An iterator over characters tagged with their byte offsets.
fn char_indices(&self) -> Self::IdxChars;
/// Compare two strings at byte indices `w1` and `w2`.
fn wstring_equal(&self, stypes: &SuffixTypes, w1: u64, w2: u64) -> bool;
}
struct Utf8<'s>(&'s [u8]);
impl<'s> Text for Utf8<'s> {
type IdxChars = iter::Enumerate<slice::Iter<'s, u8>>;
#[inline]
fn len(&self) -> u64 {
self.0.len() as u64
}
#[inline]
fn prev(&self, i: u64) -> (u64, u64) {
(i - 1, self.0[i as usize - 1] as u64)
}
#[inline]
fn char_at(&self, i: u64) -> u64 {
self.0[i as usize] as u64
}
fn char_indices(&self) -> iter::Enumerate<slice::Iter<'s, u8>> {
self.0.iter().enumerate()
}
fn wstring_equal(&self, stypes: &SuffixTypes, w1: u64, w2: u64) -> bool {
let w1chars = self.0[w1 as usize..].iter().enumerate();
let w2chars = self.0[w2 as usize..].iter().enumerate();
for ((i1, c1), (i2, c2)) in w1chars.zip(w2chars) {
let (i1, i2) = (w1 + i1 as u64, w2 + i2 as u64);
if c1 != c2 || !stypes.equal(i1, i2) {
return false;
}
if i1 > w1 && (stypes.is_valley(i1) || stypes.is_valley(i2)) {
return true;
}
}
// At this point, we've exhausted either `w1` or `w2`, which means the
// next character for one of them should be the sentinel. Since
// `w1 != w2`, only one string can be exhausted. The sentinel is never
// equal to another character, so we can conclude that the wstrings
// are not equal.
false
}
}
struct LexNames<'s>(&'s [u64]);
impl<'s> Text for LexNames<'s> {
type IdxChars = iter::Enumerate<slice::Iter<'s, u64>>;
#[inline]
fn len(&self) -> u64 {
self.0.len() as u64
}
#[inline]
fn prev(&self, i: u64) -> (u64, u64) {
(i - 1, self.0[i as usize - 1])
}
#[inline]
fn char_at(&self, i: u64) -> u64 {
self.0[i as usize]
}
fn char_indices(&self) -> iter::Enumerate<slice::Iter<'s, u64>> {
self.0.iter().enumerate()
}
fn wstring_equal(&self, stypes: &SuffixTypes, w1: u64, w2: u64) -> bool {
let w1chars = self.0[w1 as usize..].iter().enumerate();
let w2chars = self.0[w2 as usize..].iter().enumerate();
for ((i1, c1), (i2, c2)) in w1chars.zip(w2chars) {
let (i1, i2) = (w1 + i1 as u64, w2 + i2 as u64);
if c1 != c2 || !stypes.equal(i1, i2) {
return false;
}
if i1 > w1 && (stypes.is_valley(i1) || stypes.is_valley(i2)) {
return true;
}
}
// At this point, we've exhausted either `w1` or `w2`, which means the
// next character for one of them should be the sentinel. Since
// `w1 != w2`, only one string can be exhausted. The sentinel is never
// equal to another character, so we can conclude that the wstrings
// are not equal.
false
}
}
/// A trait for converting indexed characters into a uniform representation.
trait IdxChar {
/// Convert `Self` to a `(usize, u64)`.
fn idx_char(self) -> (usize, u64);
}
impl<'a> IdxChar for (usize, &'a u8) {
#[inline]
fn idx_char(self) -> (usize, u64) {
(self.0, *self.1 as u64)
}
}
impl<'a> IdxChar for (usize, &'a u64) {
#[inline]
fn idx_char(self) -> (usize, u64) {
(self.0, *self.1)
}
}
impl IdxChar for (usize, char) {
#[inline]
fn idx_char(self) -> (usize, u64) {
(self.0, self.1 as u64)
}
}
/// Binary search to find first element such that `pred(T) == true`.
///
/// Assumes that if `pred(xs[i]) == true` then `pred(xs[i+1]) == true`.
///
/// If all elements yield `pred(T) == false`, then `xs.len()` is returned.
#[allow(dead_code)]
fn binary_search<T, F>(xs: &[T], mut pred: F) -> usize
where
F: FnMut(&T) -> bool,
{
let (mut left, mut right) = (0, xs.len());
while left < right {
let mid = (left + right) / 2;
if pred(&xs[mid]) {
right = mid;
} else {
left = mid + 1;
}
}
left
}