|
| 1 | +import functools |
| 2 | +import logging |
| 3 | +import os |
| 4 | + |
| 5 | +import hydra |
| 6 | +import jax |
| 7 | +from mujoco_playground import registry, wrapper |
| 8 | +from omegaconf import OmegaConf |
| 9 | +import jax.numpy as jp |
| 10 | + |
| 11 | + |
| 12 | +import logging |
| 13 | +import os |
| 14 | +from typing import Any |
| 15 | + |
| 16 | +import numpy as np |
| 17 | +import omegaconf |
| 18 | +from numpy import typing as npt |
| 19 | +from omegaconf import DictConfig |
| 20 | +from omegaconf.errors import InterpolationKeyError |
| 21 | + |
| 22 | +_LOG = logging.getLogger(__name__) |
| 23 | + |
| 24 | + |
| 25 | +class WeightAndBiasesWriter: |
| 26 | + def __init__(self, config: DictConfig): |
| 27 | + import wandb |
| 28 | + |
| 29 | + try: |
| 30 | + name = config.wandb.name |
| 31 | + except InterpolationKeyError: |
| 32 | + name = None |
| 33 | + config.wandb.name = name |
| 34 | + config_dict = omegaconf.OmegaConf.to_container(config, resolve=True) |
| 35 | + assert isinstance(config_dict, dict) |
| 36 | + wandb.init(project="ss2r", resume=True, config=config_dict, **config.wandb) |
| 37 | + self._handle = wandb |
| 38 | + |
| 39 | + def log(self, summary: dict[str, float], step: int): |
| 40 | + self._handle.log(summary, step=step) |
| 41 | + |
| 42 | + def log_video( |
| 43 | + self, |
| 44 | + images: npt.ArrayLike, |
| 45 | + step: int, |
| 46 | + name: str = "policy", |
| 47 | + fps: int | float = 30, |
| 48 | + ): |
| 49 | + self._handle.log( |
| 50 | + { |
| 51 | + name: self._handle.Video( |
| 52 | + np.array(images, copy=False), |
| 53 | + fps=int(fps), |
| 54 | + caption=name, |
| 55 | + ) |
| 56 | + }, |
| 57 | + step=step, |
| 58 | + ) |
| 59 | + |
| 60 | + def log_artifact( |
| 61 | + self, |
| 62 | + path: str, |
| 63 | + type: str, |
| 64 | + name: str | None = None, |
| 65 | + description: str | None = None, |
| 66 | + metadata: dict[str, Any] | None = None, |
| 67 | + ): |
| 68 | + if name is None: |
| 69 | + name = self._handle.run.id |
| 70 | + if metadata is None: |
| 71 | + metadata = dict(self._handle.config) |
| 72 | + artifact = self._handle.Artifact(name, type, description, metadata) |
| 73 | + artifact.add_file(path) |
| 74 | + self._handle.log_artifact(artifact, aliases=[self._handle.run.id]) |
| 75 | + |
| 76 | + |
| 77 | +def get_state_path() -> str: |
| 78 | + log_path = os.getcwd() |
| 79 | + return log_path |
| 80 | + |
| 81 | + |
| 82 | +env_name = "QuadrupedRun" |
| 83 | +env = registry.load(env_name) |
| 84 | +env_cfg = registry.get_default_config(env_name) |
| 85 | +eval_env = registry.load(env_name, config=env_cfg) |
| 86 | +agent_name = "PPO" |
| 87 | + |
| 88 | + |
| 89 | +def get_ppo_train_fn(): |
| 90 | + from brax.training.agents.ppo import networks as ppo_networks |
| 91 | + from brax.training.agents.ppo import train as ppo |
| 92 | + from mujoco_playground.config import locomotion_params |
| 93 | + |
| 94 | + ppo_params = locomotion_params.brax_ppo_config(env_name) |
| 95 | + ppo_training_params = dict(ppo_params) |
| 96 | + network_factory = ppo_networks.make_ppo_networks |
| 97 | + if "network_factory" in ppo_params: |
| 98 | + del ppo_training_params["network_factory"] |
| 99 | + network_factory = functools.partial( |
| 100 | + ppo_networks.make_ppo_networks, **ppo_params.network_factory |
| 101 | + ) |
| 102 | + train_fn = functools.partial( |
| 103 | + ppo.train, |
| 104 | + **dict(ppo_training_params), |
| 105 | + network_factory=network_factory, |
| 106 | + ) |
| 107 | + return train_fn |
| 108 | + |
| 109 | + |
| 110 | +class Counter: |
| 111 | + def __init__(self): |
| 112 | + self.count = 0 |
| 113 | + |
| 114 | + |
| 115 | +def report(logger, step, num_steps, metrics): |
| 116 | + metrics = {k: float(v) for k, v in metrics.items()} |
| 117 | + logger.log(metrics, num_steps) |
| 118 | + step.count = num_steps |
| 119 | + |
| 120 | + |
| 121 | +@functools.partial(jax.jit, static_argnames=("env", "policy", "steps")) |
| 122 | +def rollout( |
| 123 | + env, |
| 124 | + policy, |
| 125 | + steps, |
| 126 | + rng, |
| 127 | + state, |
| 128 | +): |
| 129 | + def f(carry, _): |
| 130 | + state, current_key = carry |
| 131 | + current_key, next_key = jax.random.split(current_key) |
| 132 | + action, _ = policy(state.obs, current_key) |
| 133 | + nstate = env.step( |
| 134 | + state, |
| 135 | + action, |
| 136 | + ) |
| 137 | + return (nstate, next_key), nstate |
| 138 | + |
| 139 | + (final_state, _), data = jax.lax.scan(f, (state, rng), (), length=steps) |
| 140 | + return final_state, data |
| 141 | + |
| 142 | + |
| 143 | +def pytrees_unstack(pytree): |
| 144 | + leaves, treedef = jax.tree_flatten(pytree) |
| 145 | + n_trees = leaves[0].shape[0] |
| 146 | + new_leaves = [[] for _ in range(n_trees)] |
| 147 | + for leaf in leaves: |
| 148 | + for i in range(n_trees): |
| 149 | + new_leaves[i].append(leaf[i]) |
| 150 | + new_trees = [treedef.unflatten(leaf) for leaf in new_leaves] |
| 151 | + return new_trees |
| 152 | + |
| 153 | + |
| 154 | +def render(env, policy, steps, rng, camera=None): |
| 155 | + state = env.reset(rng) |
| 156 | + state = jax.tree_map(lambda x: x[:5], state) |
| 157 | + orig_model = env._mjx_model |
| 158 | + if hasattr(env, "_randomized_models"): |
| 159 | + render_env = env |
| 160 | + model = jax.tree_map( |
| 161 | + lambda x, ax: jp.take(x, jp.arange(5), axis=ax) if ax is not None else x, |
| 162 | + env._randomized_models, |
| 163 | + env._in_axes, |
| 164 | + ) |
| 165 | + render_env._randomized_models = model |
| 166 | + else: |
| 167 | + render_env = env |
| 168 | + _, trajectory = rollout(render_env, policy, steps, rng[0], state) |
| 169 | + env._mjx_model = orig_model |
| 170 | + videos = [] |
| 171 | + for i in range(5): |
| 172 | + ep_trajectory = jax.tree_map(lambda x: x[:, i], trajectory) |
| 173 | + ep_trajectory = pytrees_unstack(ep_trajectory) |
| 174 | + video = env.render(ep_trajectory, camera=camera) |
| 175 | + videos.append(video) |
| 176 | + return np.asarray(videos).transpose(0, 1, 4, 2, 3) |
| 177 | + |
| 178 | + |
| 179 | +@hydra.main(version_base=None, config_path="ss2r/configs", config_name="train_brax") |
| 180 | +def main(cfg): |
| 181 | + _LOG.info( |
| 182 | + f"Setting up experiment with the following configuration: " |
| 183 | + f"\n{OmegaConf.to_yaml(cfg)}" |
| 184 | + ) |
| 185 | + logger = WeightAndBiasesWriter(cfg) |
| 186 | + train_fn = get_ppo_train_fn() |
| 187 | + steps = Counter() |
| 188 | + with jax.disable_jit(not cfg.jit): |
| 189 | + make_policy, params, _ = train_fn( |
| 190 | + environment=env, |
| 191 | + eval_env=eval_env, |
| 192 | + wrap_env_fn=wrapper.wrap_for_brax_training, |
| 193 | + progress_fn=functools.partial(report, logger, steps), |
| 194 | + ) |
| 195 | + if cfg.training.render: |
| 196 | + rng = jax.random.split(jax.random.PRNGKey(cfg.training.seed), 128) |
| 197 | + video = render( |
| 198 | + eval_env, |
| 199 | + make_policy(params, deterministic=True), |
| 200 | + 1000, |
| 201 | + rng, |
| 202 | + ) |
| 203 | + logger.log_video(video, steps.count, "eval/video") |
| 204 | + _LOG.info("Done training.") |
| 205 | + |
| 206 | + |
| 207 | +if __name__ == "__main__": |
| 208 | + main() |
0 commit comments