-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathWannierKit.py
556 lines (487 loc) · 22.2 KB
/
WannierKit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
'''
Created on 2018 12 8
@author: Andrew
'''
import numpy as np
import re
#import quickSort as qSort
#import matplotlib
#matplotlib.use('Agg')
import matplotlib.pyplot as plt
class TBmodel(object):
Ham=[]
Ham_k=[]
lattice=[]
norbital=0
orbital_coor=[]
onsite_energy=[]
nhoppings=0
hopping=[]
kpath=[]
kmesh=[]
wcc_path=[]
wcc_polar_direction=-1
nelectrons=-1
def __init__(self):
self.readInputs()
def readInputs(self):
try:
f=open('POSCAR','r')
except IOError as e:
print e
exit()
data=f.read()
f.close()
data=[line for line in data.split('\n') if line]
# read the position of each tag
positionOfOrbital=-1
positionOfHopping=-1
positionOfKPath=-1
positionOfKMesh=-1
positionOfWCC=-1
for index, line in enumerate(data):
if(re.findall('[a-zA-Z]+',line)):
if(re.findall('[a-zA-Z]+',line)[0]=='Direct'): positionOfOrbital=index+1
if(re.findall('[a-zA-Z]+',line)[0]=='Hopping'):positionOfHopping=index+1
if(re.findall('[a-zA-Z]+',line)[0]=='KPath'):positionOfKPath=index+1
if(re.findall('[a-zA-Z]+',line)[0]=='KMesh'):positionOfKMesh=index+1
if(re.findall('[a-zA-Z]+',line)[0]=='WCC'):positionOfWCC=index+1
# read lattice
length_factor=float(data[1])
for i in range(2,5):
ax,ay,az=re.findall('[\-0-9.eE]+',data[i])
self.lattice.append([float(ax),float(ay),float(az)])
self.lattice=length_factor*np.array(self.lattice)
# read number of orbitals
for norb in re.findall('[\-0-9.eE]+',data[6]):
self.norbital+=int(norb)
# read orbital coordinates and onsite energies
for i in range(positionOfOrbital,positionOfOrbital+self.norbital):
ox,oy,oz,oe=re.findall('[\-0-9.eE]+',data[i])
self.orbital_coor.append([float(ox),float(oy),float(oz)])
self.onsite_energy.append(float(oe))
self.orbital_coor=np.array(self.orbital_coor)
self.onsite_energy=np.array(self.onsite_energy)
# read hoppings
# firstly, construct the architecture
for origin_orbital_index in range(self.norbital):
hopping_tmp=[]
for destiny_orbital_index in range(self.norbital):
hopping_tmp.append([])
self.Ham.append(hopping_tmp)
# then read all hoppings
self.nhoppings=int(re.findall('[0-9]+',data[positionOfHopping])[0])
#print self.nhoppings
for ihopping in range(positionOfHopping+2,positionOfHopping+2+self.nhoppings):
iorigin,idestiny,Rx,Ry,Rz,amplify_str=re.findall('[\-0-9.eEi+]+',data[ihopping])
R=np.array([int(Rx),int(Ry),int(Rz)])
# convert amplify
amplify_list=[str for str in re.findall('[\-0-9.eEi]+',amplify_str)]
amplify_real=0.
amplify_imag=0.
if(len(amplify_list)==2):
amplify_real=float(amplify_list[0])
amplify_imag=float(re.findall('[\-0-9.eE]+',amplify_list[1])[0])
else:
amplify_imag_check=[str for str in re.findall('[i]',amplify_str)]
if(amplify_imag_check):
amplify_imag=float(re.findall('[\-0-9.eE]+',amplify_list[0])[0])
else:
amplify_real=float(amplify_list[0])
amplify=amplify_real+1j*amplify_imag
self.Ham[int(iorigin)][int(idestiny)].append([R,amplify])
# read KPath
if(positionOfKPath>0):
nHighSymKpts=int(re.findall('[0-9]+',data[positionOfKPath])[0])
highSymKpts_list=[]
# read high symmetry k points
for ihsk in range(positionOfKPath+1,positionOfKPath+1+nHighSymKpts):
kx,ky,kz,ninter=re.findall('[\-0-9.eE]+',data[ihsk])
highSymKpts_list.append([[float(kx),float(ky),float(kz)],int(ninter)])
# generate k path
for ihsk in range(1,nHighSymKpts):
kx_list=np.linspace(highSymKpts_list[ihsk-1][0][0],
highSymKpts_list[ihsk][0][0],
highSymKpts_list[ihsk-1][1])
ky_list=np.linspace(highSymKpts_list[ihsk-1][0][1],
highSymKpts_list[ihsk][0][1],
highSymKpts_list[ihsk-1][1])
kz_list=np.linspace(highSymKpts_list[ihsk-1][0][2],
highSymKpts_list[ihsk][0][2],
highSymKpts_list[ihsk-1][1])
k_list=zip(kx_list,ky_list,kz_list)
# delete the end point
k_list.pop(highSymKpts_list[ihsk-1][1]-1)
self.kpath.extend(k_list)
# read Kmesh
if(positionOfKMesh>0):
nkx, nky, nkz=[int(i) for i in re.findall('[0-9]+',data[positionOfKMesh])]
# read WCC
if(positionOfWCC>0):
wccPolarDirection, integrationStep, occ=re.findall('[0-9]+',data[positionOfWCC])
nHighSymKpts=int(re.findall('[0-9]+',data[positionOfWCC+2])[0])
self.wcc_polar_direction=int(wccPolarDirection)
self.nelectrons=int(occ)
integrationStep=int(integrationStep)
stepLength=1./integrationStep
highSymKpts_list=[]
for ihsk in range(positionOfWCC+3,positionOfWCC+3+nHighSymKpts):
#print data[ihsk]
kx,ky,kz,ninter=re.findall('[\-0-9.eE]+',data[ihsk])
highSymKpts_list.append([[float(kx),float(ky),float(kz)],int(ninter)])
kpath=[]
for ihsk in range(1,nHighSymKpts):
kx_list=np.linspace(highSymKpts_list[ihsk-1][0][0],
highSymKpts_list[ihsk][0][0],
highSymKpts_list[ihsk-1][1])
ky_list=np.linspace(highSymKpts_list[ihsk-1][0][1],
highSymKpts_list[ihsk][0][1],
highSymKpts_list[ihsk-1][1])
kz_list=np.linspace(highSymKpts_list[ihsk-1][0][2],
highSymKpts_list[ihsk][0][2],
highSymKpts_list[ihsk-1][1])
k_list=zip(kx_list,ky_list,kz_list)
k_list.pop(highSymKpts_list[ihsk-1][1]-1)
kpath.extend(k_list)
kpath.append(kpath[0])
for ik in kpath:
#print ik
polar_k_line=[]
for ik_online in range(integrationStep):
kpt_tmp=[ik[0],ik[1],ik[2]]
kpt_tmp[self.wcc_polar_direction]=ik_online*stepLength
polar_k_line.append(np.array(kpt_tmp))
#print polar_k_line
self.wcc_path.append(polar_k_line)
def constructHk(self,kpt=[0.,0.,0.]):
kpt=np.array(kpt)
Ham_k=[]
for ibloch in range(self.norbital):
Hk_tmp=[]
for jbloch in range(self.norbital):
matrix_element=0.
for hopping in self.Ham[ibloch][jbloch]:
matrix_element+=hopping[1]*np.exp(-2j*np.pi*np.dot(kpt,hopping[0]),dtype=complex)
#print ibloch, jbloch, hopping
#print kpt, hopping[0], np.exp(2j*np.pi*np.dot(kpt,hopping[0]),dtype=complex)
Hk_tmp.append(matrix_element)
Ham_k.append(Hk_tmp)
Ham_k=np.array(Ham_k)+self.onsite_energy*np.eye(self.norbital,dtype=complex)
#print Ham_k
return Ham_k
def solveHk(self,kpt=[0.,0.,0.],return_orb=False):
Ham_k=self.constructHk(kpt=kpt)
#print Ham_k
eig, vec = np.linalg.eigh(Ham_k,'U')
if return_orb:
return eig, vec
else:
return eig
def plotbands(self):
fig = plt.figure()
for ikpt, kpt in enumerate(self.kpath):
eig_list = self.solveHk(kpt=kpt)
#print kpt, eig_list
for eig in eig_list:
plt.scatter(ikpt,eig,color='black')
plt.show()
def calcOverlap(self,vec_k0,vec_k1,b,dim=-1):
'''
Core algorithm for overlap calculation
Ref: Z2Pack: Numerical implementation of hybridWannier centers for identifying topological materials
PHYSICAL REVIEW B 95, 075146 (2017)
page 18, equation (D3)
'''
dim = self.nelectrons if dim < 0 else dim
br=np.array([np.exp(-2j*np.pi*np.dot(b,r),dtype=complex) for r in self.orbital_coor])
#print 'v0', vec_k0
#print 'v1', vec_k1
OverlapMatrix=np.eye(dim,dtype=complex)
for m in range(dim):
for n in range(dim):
#print vec_k0[m]
#print m, n
OverlapMatrix[m][n]=sum(vec_k0[m].conjugate()*vec_k1[n]*br)
#print OverlapMatrix
return OverlapMatrix
def calcWilsonLoop(self,kpts=[],bandset=-1):
'''
Wilson loop algorithm
'''
D_overlapMatrix=self.nelectrons if bandset < 0 else 1
#print D_overlapMatrix
vec_list=[]
for ikpt in kpts:
eig, vec = self.solveHk(ikpt,True)
idx=np.real(eig).argsort()
idx=idx[:self.nelectrons] if bandset < 0 else [idx[bandset]]
vec=vec[:, idx].transpose()
vec_list.append(np.array(vec))
vec_list.append(vec_list[0])
Wilson_loop=np.eye(D_overlapMatrix,dtype=complex)
for ikpt in range(len(kpts)):
b=kpts[ikpt+1]-kpts[ikpt] if ikpt<(len(kpts)-1) else kpts[0]-kpts[ikpt]+1
overlapMatrix=self.calcOverlap(vec_list[ikpt],vec_list[ikpt+1],b,dim=D_overlapMatrix)
Wilson_loop=np.dot(Wilson_loop,overlapMatrix)
eig, _ = np.linalg.eig(Wilson_loop)
return [(1j*np.log(z,dtype=complex)).real/(2*np.pi) %1 for z in eig]
def calcParallelTransport(self,kpts=[],bandset=-1):
'''
Parallel transport algorithm
Ref: Maximally localized generalized Wannier functions for composite energy bands
PHYSICAL REVIEW B 56, 20 (1997)
page 12853, the highlight sentences
'''
D_overlapMatrix=self.nelectrons if bandset < 0 else 1
vec_list=[]
for ikpt in kpts:
eig, vec =self.solveHk(ikpt,True)
sortIndex=eig.argsort()
sortIndex=sortIndex[:self.nelectrons] if bandset < 0 else [sortIndex[bandset]]
vec=np.array(vec)
vec=vec[:,sortIndex].transpose()
vec_list.append(vec)
vec_list.append(vec_list[0])
VW_stack=np.eye(D_overlapMatrix,dtype=complex)
for ikpt in range(len(kpts)):
b=kpts[ikpt+1]-kpts[ikpt] if ikpt<(len(kpts)-1) else 1+kpts[0]-kpts[ikpt]
overlap_matrix=self.calcOverlap(vec_list[ikpt],vec_list[ikpt+1],b,dim=D_overlapMatrix)
#print overlap_matrix
V,E,W=np.linalg.svd(overlap_matrix)
VW_stack=np.dot(VW_stack,np.dot(V,W))
eig, _=np.linalg.eig(VW_stack)
wcc=np.array([(1j*np.log(z,dtype=complex)).real/(2*np.pi) %1 for z in eig])
return wcc
def calcGradualDecompose(self,kpts=[],bandset=-1):
'''
GradualDecompose algorithm
the most expensive way, just for fun
'''
D_overlapMatrix=self.nelectrons if bandset < 0 else 1
#print D_overlapMatrix
vec_list=[]
for ikpt in kpts:
eig, vec =self.solveHk(ikpt,True)
sortIndex=eig.argsort()
sortIndex=sortIndex[:self.nelectrons] if bandset < 0 else [sortIndex[bandset]]
vec=np.array(vec)
vec=vec[:,sortIndex].transpose()
vec_list.append(vec)
vec_list.append(vec_list[0])
wcc=np.linspace(0,0,D_overlapMatrix)
for ikpt in range(len(kpts)):
b=kpts[ikpt+1]-kpts[ikpt] if ikpt<(len(kpts)-1) else 1+kpts[0]-kpts[ikpt]
#print vec_list[ikpt]
#print vec_list[ikpt+1]
overlap_matrix=self.calcOverlap(vec_list[ikpt],vec_list[ikpt+1],b,dim=D_overlapMatrix)
#print overlap_matrix
eig, _=np.linalg.eig(overlap_matrix.transpose().conjugate())
wcc+=np.array([(1j*np.log(z,dtype=complex)).real for z in eig])
#print wcc
#eig, _=np.linalg.eig(VW_stack)
#wcc=np.array([(1j*np.log(z,dtype=complex)).real/(2*np.pi) %1 for z in eig])
wcc_normalized=np.array([iwcc/(2*np.pi) %1 for iwcc in wcc])
return wcc_normalized
def plotWCC(self, algorithm='WilsonLoop'):
'''
There I provide three algorithms to calculate the one-dimensional wccs
algorithms=WilsonLoop | ParallelTransport | GradualDecompose
'''
fig = plt.figure()
for ikline, kline in enumerate(self.wcc_path):
wcc_sum=0.
if (algorithm=='ParallelTransport'):
for wcc in self.calcParallelTransport(kline):
wcc_sum+=wcc
plt.scatter(ikline,wcc,color='black')
elif algorithm=='WilsonLoop':
for wcc in self.calcWilsonLoop(kline):
wcc_sum+=wcc
plt.scatter(ikline,wcc,color='black')
elif algorithm=='GradualDecompose':
for wcc in self.calcGradualDecompose(kline):
wcc_sum+=wcc
plt.scatter(ikline,wcc,color='black')
else:
print 'there are three optional algorithms: WilsonLoop | ParallelTransport | GradualDecompose'
exit()
plt.scatter(ikline,wcc_sum%1,color='red')
plt.show()
def calcBerryCurvAtSingleKpt(self,k0,b1,b2,bandset=-1, algorithm='WilsonLoop'):
kline=[k0,k0+b1,k0+b1+b2]
wcc_sum=0.
if (algorithm=='ParallelTransport'):
for wcc in self.calcParallelTransport(kline,bandset=bandset):
wcc_sum+=wcc
elif algorithm=='WilsonLoop':
for wcc in self.calcWilsonLoop(kline,bandset=bandset):
wcc_sum+=wcc
elif algorithm=='GradualDecompose':
for wcc in self.calcGradualDecompose(kline,bandset=bandset):
wcc_sum+=wcc
return wcc_sum%1
class WannierKit(object):
'''
classdocs
'''
kpts_list=[]
lattice=[]
lattice_inv=[]
reciprocal_lattice=[]
overlap_matrix=[] # [kpt][nnkpt][ibnd][jbnd]
overlap_corr_nnkpts=[] # [startkp][inkpt]
overlap_nkpts_index=[] # [startkp][inkpt]
overlap_b=[] # [startkp][inkpt]
b_list=[]
wb_list=[]
nkpts=-1
nbands=-1
nnkpts=-1
def __init__(self):
'''
Constructor
'''
def calcWannierCenter(self,iband_range=[0,1],startkpt=0,endkpt=-1):
'''
<a(r)|r|a(r)>=Sum_k <u_k|id/dk|u_k>
=Sum_k_b wb*b*Im Ln<u_k|u_k+b>
'''
endkpt=self.nkpts if endkpt<0 else endkpt
nband=iband_range[1]-iband_range[0]+1
lambda_=np.eye(nband)
kpath=self.kpts_list[endkpt]-self.kpts_list[startkpt]
#print '',self.getM(ikpt=0,inkpt=0,iband_range=iband_range)
Wilson_loop=np.eye(nband)
VW_stack=np.eye(nband)
for ikpt in range(startkpt,endkpt+1):
for inkpt in range(self.nnkpts):
# only include one direction
if(np.dot(self.overlap_b[ikpt][inkpt],kpath)>0):
M=self.getM(ikpt=ikpt,inkpt=inkpt,iband_range=iband_range)
[V,E,W]=np.linalg.svd(M)
VW_stack=np.dot(VW_stack,np.dot(V,W))
Wilson_loop=np.dot(Wilson_loop,M)
eig2,_=np.linalg.eig(Wilson_loop)
print eig2
print [(np.log(z)/(2*np.pi)).imag % 1 for z in eig2]
[eig,_]=np.linalg.eig(VW_stack.conjugate().transpose())
print eig
wcc=[(np.log(z)/(2*np.pi)).imag % 1 for z in eig]
return wcc
def getM(self,ikpt=0,inkpt=0,iband_range=[0,1]):
M=[]
for iband in range(iband_range[0],iband_range[1]+1):
M_tmp=[]
for jband in range(iband_range[0],iband_range[1]+1):
M_tmp.append(self.overlap_matrix[ikpt][inkpt][iband][jband])
M.append(M_tmp)
return np.array(M)
def cartToFrac(self,cart_coor):
#print 'cart:',cart_coor
#print self.lattice_inv
frac_coor=np.dot(cart_coor,self.lattice_inv)
#print 'frac:',frac_coor
frac_coor_to_home=[]
for coor in frac_coor:
#print 'former',coor
frac_coor_to_home.append(coor%1)
#print 'latter',coor
return np.array(frac_coor_to_home)
def readData(self):
self.readKpts()
self.readLattice()
self.readOverlap()
def readKpts(self):
f=open('wannier90.win','r')
data=f.read()
f.close()
data=[line for line in data.split('\n') if line]
kpoints_block_met=False
for line in data:
if(line=='end kpoints'):break
if(kpoints_block_met):
kx, ky, kz =re.findall('[\-0-9.eE]+',line)
self.kpts_list.append(np.array([float(kx),float(ky),float(kz)]))
if(line=='begin kpoints'):kpoints_block_met=True
def readLattice(self):
f=open('wannier90.wout','r')
data=f.read()
f.close()
data=[line for line in data.split('\n') if line]
lattice_position=-1
klattice_position=-1
nnkpt_position=-1
b_list_position=-1
for line_index, line in enumerate(data):
if(line==' Lattice Vectors (Ang)'):lattice_position=line_index+1
if(line==' Reciprocal-Space Vectors (Ang^-1)'):klattice_position=line_index+1
if(line==' | Shell # Nearest-Neighbours |'):nnkpt_position=line_index+2
if(line==' | b_k Vectors (Ang^-1) and Weights (Ang^2) |'):
b_list_position=line_index+4
break
lattice=[]
for line_index in range(lattice_position,lattice_position+3):
#print data[line_index]
_, ax,ay,az=re.findall('[\-0-9.eE]+',data[line_index])
lattice.append([float(ax),float(ay),float(az)])
self.lattice=np.array(lattice)
self.lattice_inv=np.linalg.inv(self.lattice)
reciprocal_lattice=[]
for line_index in range(klattice_position,klattice_position+3):
#print data[line_index]
_, kx,ky,kz=re.findall('[\-0-9.eE]+',data[line_index])
reciprocal_lattice.append([float(kx),float(ky),float(kz)])
self.reciprocal_lattice=np.array(reciprocal_lattice)
snn=0
line_index=nnkpt_position
while(True):
try:
_, nn=re.findall('[\-0-9.eE]+',data[line_index])
line_index+=1
snn+=int(nn)
except ValueError as e:
break
for line_index in range(b_list_position,b_list_position+snn):
_, bkx,bky,bkz, wb=re.findall('[\-0-9.eE]+',data[line_index])
self.b_list.append(np.array([float(bkx),float(bky),float(bkz)]))
self.wb_list.append(float(wb))
def readOverlap(self):
f=open('wannier90.mmn','r')
data=f.read()
f.close()
data=[line for line in data.split('\n') if line]
nbands, nkpts, nnkpts=re.findall('[\-0-9.eE]+',data[1])
nbands=int(nbands)
nkpts=int(nkpts)
nnkpts=int(nnkpts)
self.nbands=nbands
self.nkpts=nkpts
self.nnkpts=nnkpts
#Mmn=[] #with four index: k, nnk, ibnd, jbnd
#Overlap_kpts=[]
line_index=2
for ikpt in range(nkpts):
overlap_nnkpts_tmp=[]
overlap_nnkpts_index_tmp=[]
overlap_b_tmp=[]
overlap_per_k=[]
for innkpt in range(nnkpts):
start_kp, end_kp, enhance_kpx, enhance_kpy, enhance_kpz = re.findall('[\-0-9.eE]+',data[line_index])
end_kp_coor=self.kpts_list[int(end_kp)-1]+np.array([int(enhance_kpx),int(enhance_kpy),int(enhance_kpz)])
overlap_nnkpts_index_tmp.append(int(end_kp)-1)
overlap_nnkpts_tmp.append(end_kp_coor)
overlap_b_tmp.append(end_kp_coor-self.kpts_list[int(start_kp)-1])
line_index+=1
overlap_per_k_per_nnk=[]
for iband in range(nbands):
overlap_per_k_per_nnk_per_ibnd=[]
for jband in range(nbands):
relpart, imgpart = re.findall('[\-0-9.eE]+',data[line_index])
line_index+=1
overlap_per_k_per_nnk_per_ibnd.append(float(relpart)+float(imgpart)*1j)
overlap_per_k_per_nnk.append(overlap_per_k_per_nnk_per_ibnd)
overlap_per_k.append(overlap_per_k_per_nnk)
self.overlap_corr_nnkpts.append(overlap_nnkpts_tmp)
self.overlap_b.append(overlap_b_tmp)
self.overlap_nkpts_index.append(overlap_nnkpts_index_tmp)
self.overlap_matrix.append(overlap_per_k)