forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_backend_compiler_lib.cpp
114 lines (103 loc) · 3.77 KB
/
test_backend_compiler_lib.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#include <torch/csrc/jit/backends/backend.h>
namespace torch {
namespace jit {
// Implementation of a PyTorch Backend that can process, compile and execute
// TorchScript Modules composed of 'add' and 'sub' operators. It just supports
// for modules that implement a sum or subtraction of 2 inputs (i.e. in1 + in2
// or in1 - in2). Hence the methods of the models expect exactly 2 inputs of
// type Tensor. This backend is used to demonstrate the flow of compilation and
// execution with minimum amount of work. It's not intended to a practical
// backend that can be used for actual inference.
// Implementation details:
//
// Compilation
// 1. A backend with minimum compilation features, "backend_with_compiler_demo"
// is added.
// 2. The compilation happens AOT in the preprocess function registered to this
// backend.
// 3. Compiled results are stored in a string blob for each method. They are
// serialized to the lowered module with __getstate__ function.
// 4. Error message with model source code is thrown, for features not handled
// by the backend compiler.
//
// Runtime
// 1. The compiled blob is loaded in __setstate__ method.
// 2. The compile function of the backend: parse the preprocessed blob to the
// format (a list of tokens) that the backend can understand.
// 3. The execute function of the backend executes the specified method
// (handle).
namespace {
std::vector<std::string> parseMethodHandle(const std::string& blob) {
std::vector<std::string> result;
std::stringstream s_stream(blob);
while (s_stream.good()) {
std::string substr;
getline(s_stream, substr, ',');
result.push_back(substr);
}
return result;
}
} // namespace
class BackendWithCompiler : public PyTorchBackendInterface {
public:
// Constructor.
explicit BackendWithCompiler() {}
virtual ~BackendWithCompiler() = default;
bool is_available() override {
return true;
}
// Since the actual compilation is done AOT,
c10::impl::GenericDict compile(
c10::IValue processed,
c10::impl::GenericDict method_compile_spec) override {
auto dict = processed.toGenericDict();
auto handles = c10::Dict<std::string, std::vector<std::string>>();
for (const auto& kv : dict) {
auto tokens = parseMethodHandle(kv.value().toStringRef());
handles.insert(kv.key().toStringRef(), tokens);
}
return c10::impl::toGenericDict(handles);
}
c10::impl::GenericList execute(
c10::IValue handle,
c10::impl::GenericList inputs) override {
TORCH_INTERNAL_ASSERT(inputs.size() == 2);
c10::IValue val0 = inputs[0];
at::Tensor x = val0.toTensor();
c10::IValue val1 = inputs[1];
at::Tensor h = val1.toTensor();
c10::List<at::Tensor> output_list;
double scalar_val = 1.0;
for (const auto& token : handle.toList()) {
IValue val = token;
auto instruction = std::string(IValue(token).toStringRef());
double const_val = 1.0;
if (instruction.rfind("prim::Constant", 0) == 0) {
TORCH_CHECK(
instruction.size() > 15,
"Constant value is expected in ",
instruction);
auto sub = instruction.substr(15);
const_val = stod(sub);
} else if (token == "aten::add") {
output_list.emplace_back(x.add(h, const_val));
} else if (token == "aten::sub") {
output_list.emplace_back(x.sub(h, const_val));
} else {
TORCH_CHECK(
false,
"Instruction, ",
instruction,
" is not supported. ",
"Contact the backend POC for details. ");
}
}
return c10::impl::toList(output_list);
}
};
namespace {
constexpr auto backend_name = "backend_with_compiler_demo";
static auto cls = torch::jit::backend<BackendWithCompiler>(backend_name);
} // namespace
} // namespace jit
} // namespace torch