-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathIntroToCompPhyPart1.Rpres
786 lines (595 loc) · 23.1 KB
/
IntroToCompPhyPart1.Rpres
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
<style>
.reveal h1, .reveal h2, .reveal h3 {
word-wrap: normal;
-webkit-hyphens: none;
-moz-hyphens: none;
hyphens: none;
}
.section .reveal .state-background{
background-color: gray;
}
</style>
Comparative Phylogenetics in R
========================================================
date: `r format(Sys.Date(), "%d %B, %Y")`
author: Hannah L. Owens
autosize: true
width: 1400
height: 1000
font-family: 'Futura'
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Anchovy_closeup.jpg/800px-Anchovy_closeup.jpg" style="width:50%; align:right;"></img>
Twitter Policy
========================================================
<img src="https://upload.wikimedia.org/wikipedia/en/thumb/9/9f/Twitter_bird_logo_2012.svg/1280px-Twitter_bird_logo_2012.svg.png" style="background-color:transparent; border:0px; box-shadow:none;"></img>
***
- Tweets are ok
- Attendance implies consent (wide-angle group shots)
- Asking permission before posting closer shots is just part of being a cool human.
- Our hashtag is #GLOBE_rWorkingGroup
- Hannah is @HannahOish; Maria is @marianovosolov
Introduction
========================================================
type: section
Introduction: The Plan
========================================================
- **Introduction**
- Loading and Plotting Phylogenies
- Character Data
- Calculating Phylogenetic Signal
Introduction: What R Cannot Do (On Its Own)
========================================================
incremental: true
- Phylogenetic inference
- Alignments
- BUT
- "ips" is a wrapper for all your favorites
+ raxml
+ mrbayes
+ beauti and BEAST
+ BayesTraits
+ TreeAnnotator
+ mafft and prank
+ gblocks and aliscore
***
<img src="https://freesvg.org/img/Hammer.png" style="width: 100%"></img>
Introduction: What R CAN Do!
========================================================
incremental: true
- Plotting
- Comparative phylogenetics
+ Modeling character evolution
+ Calculating phylogenetic signal
+ Ancestral character reconstruction
+ [And MUCH more](https://cran.r-project.org/web/views/Phylogenetics.html)!
***
<img src="https://media.giphy.com/media/DgLsbUL7SG3kI/giphy.gif" style="width: 100%;"></img>
Activity Dataset
========================================================
type: section
Activities: Anchovies
========================================================
<div align="left">
<img src="anchovy.jpg" width=100%>
</div>
***
- Bloom *et al*. 2018. Evolution of body size and trophic position in migratory fishes: a phylogenetic comparative analysis of Clupeiformes (anchovies, herring, shad, and allies). *Biol. J. Linn. Soc.* 125: 302 - 314.
- Body size and trophic level from FishBase
- Anadromy from previous work, updated w/ new info
Activities: Anchovies
========================================================
<div align="left">
<img src="anchovy.jpg" width=100%>
</div>
***
- Range from 2 to 40 cm
- Some freshwater, brackish, and marine
- Diadromous
+ Migrate between fresh and marine waters
The Plan
====================================
type: section
- Introduction
- **Loading and Plotting Phylogenies**
- Character Data
- Calculating Phylogenetic Signal
Loading and Plotting Phylogenies
====================================
type: section
Loading and Plotting Phylogenies
========================================================
- Loading tree files
- Parts of tree files
- Displaying trees
```{r setup, include=FALSE, echo=FALSE}
library(knitr)
```
Loading and Plotting Phylogenies
========================================================
The libraries we're using
```{r}
library(ape)
#The Swiss army knife of comparative phylogenetics R packages
library(geiger)
#A package for "macroevolutionary simulation and estimating parameters related to diversification"
library(phytools)
#Very useful for visualization particularly, great blog support
```
Loading and Plotting Phylogenies : Loading Tree
========================================================
- Can read in a single tree or multiple trees.
- Takes ".tre" OR ".nex" nexus files
- You can also load in newick files with read.tree().
```{r}
istioTree <- read.nexus("Data/Fish_12Tax_time_calibrated.tre")
```
Loading and Plotting Phylogenies : Parts of tree files
========================================================
```{r}
istioTree
str(istioTree)
```
Loading and Plotting Phylogenies : Parts of tree files
========================================================
What does the file look like?
```{r}
head(istioTree$edge) #Two columns, start node and end node/tip; tips labeled first
head(istioTree$edge.length) #Gives lengths of branches by edge
```
Loading and Plotting Phylogenies : Parts of tree files
========================================================
What does the file look like?
```{r}
istioTree$tip.label #Gives a list of tip labels, order corresponds to edge number
is.ultrametric(istioTree) #Checks to see if the tree is ultrametric
```
Loading and Plotting Phylogenies : Displaying trees
========================================================
The basics
```{r, fig.align="center", fig.height=15, fig.width=30}
plot(istioTree, cex = 4) #Basic view (phylogram)
nodelabels(cex = 4)
```
Loading and Plotting Phylogenies : Searching trees
========================================================
Finding tips that match
- not specific to comparative phylogenetics
```{r, fig.align="center", fig.height=15, fig.width=30}
colors <- c("black", "red")
matches <- grep("Kajikia", istioTree$tip.label, value = T)
matches
```
Loading and Plotting Phylogenies : Searching trees
========================================================
Highlighting matching taxa
```{r, fig.align="center", fig.height=15, fig.width=30}
plot(istioTree, cex = 4,
tip.col = ifelse(istioTree$tip.label %in% matches,
'red','black'))
```
Loading and Plotting Phylogenies : Searching trees
========================================================
Finding the node with a most-recent common ancestor.
```{r, fig.align="center", fig.height=15, fig.width=30}
#Remember, these are our matches
matches
#What is the node number?
findMRCA(tree = istioTree, tips = matches, type = "node")
```
Challenge 1: Load and Display a Tree
========================================================
type: prompt
We have given you a phylogeny of clupeiform fishes from
[Bloom and Lovejoy, 2014](https://royalsocietypublishing.org/doi/full/10.1098/rspb.2013.2081). Load it into R and display the tree. The file is called "Clupeiform phylogeny.nex".
Bonus challenge: Which node number represents the most
recent common ancestor for the *Anchoa* clade?
Challenge 1: Load and Display a Tree
========================================================
type: prompt
The node of the *Anchoa* MRCA is 178.
```{r, fig.align="center", fig.height=10, fig.width=30, fig.show = "hold"}
anchovyTree <- read.nexus("Data/Clupeiform phylogeny.nex")
matches <- grep("Anchoa", anchovyTree$tip.label, value = T)
plot(anchovyTree, cex = 0.5,
tip.col = ifelse(anchovyTree$tip.label %in% matches,'red','black'))
findMRCA(tree = anchovyTree, tips = matches, type = "node")
nodelabels(node = 178, text = "MRCA", bg = F, col = "red")
```
Loading and Plotting Phylogenies : Displaying trees
========================================================
Getting fancy...
```{r, fig.width = 30, fig.height = 15, fig.align = "center"}
plot(istioTree, type = "cladogram", use.edge.length = F,
edge.width = 2, font = 4, cex = 2.5)
```
Loading and Plotting Phylogenies : Displaying trees
========================================================
Getting fancy...
```{r, fig.width = 30, fig.height = 15, fig.align = "center"}
plot(istioTree, type = "fan", rotate.tree = 30,
main = "Phylogeny of Billfishes", cex.main = 3.5,
label.offset = 2, cex = 2.5,
tip.color = c("blue", "red", "red", "yellow2",
"yellow2", "orange1", "chartreuse4",
"chartreuse4", "chartreuse4",
"chartreuse4", "black", "purple"))
```
Challenge 2: Make Your Own "Fancy" Tree
========================================================
type: prompt
Try to imitate this tree. It is a subset of the anchovy tree trimmed using extract.clade() like this:
`subsetAnchovyTree <- extract.clade(anchovyTree, node = 160)`.
Use `?ape::plot.phylo()` for help.
```{r echo=FALSE, fig.align="center", fig.height=15, fig.width=30}
subsetAnchovyTree <- extract.clade(anchovyTree, node = 160)
plot(subsetAnchovyTree, type = "fan", rotate.tree = 45, open.angle = 180,
main = "Phylogeny of Anchovies", cex.main = 5, col.main = "green",
label.offset = 2, cex = 2.5, tip.color = c("blue", "red"))
```
Challenge 2: Make Your Own "Fancy" Tree
========================================================
type: prompt
Here's how I made that tree. How'd you do?
```{r fig.align="center", fig.height=15, fig.width=30}
subsetAnchovyTree <- extract.clade(anchovyTree, node = 160)
plot(subsetAnchovyTree, type = "fan", rotate.tree = 45, open.angle = 180,
main = "Phylogeny of Anchovies", cex.main = 5, col.main = "green",
label.offset = 2, cex = 2.5, tip.color = c("blue", "red"))
```
The Plan
====================================
type: section
- Introduction
- Loading and Plotting Phylogenies
- **Character Data**
- Calculating Phylogenetic Signal
Character Data
====================================
type: section
Character Data
====================================
- Loading data
- Uniting with tree
- Plotting on tree
Character Data : Loading data
========================================================
Multiple characters in a .csv file
```{r}
characterTable <- read.csv("Data/CodingTableThresh95.csv", row.names = 1)
characterTable[,1:4] #Showing the data
```
Character Data : Union with tree
========================================================
Combining the tree and the character data
```{r warning=TRUE}
treeWData <- treedata(istioTree, characterTable, sort = T)
#Trims out taxa that are missing from the tree or the character table
```
Character Data : Union with tree
========================================================
Original tree versus trimmed tree
```{r echo=FALSE, fig.width = 9.5, fig.height = 10, fig.show='hold'}
plot(istioTree, main = "Original Tree", cex.main = 2.5, cex = 2) #Here's the original tree
plot(treeWData$phy, main = "Trimmed Tree", cex.main = 2.5, cex = 2) #Here's the trimmed tree
```
Character Data : Union with tree
========================================================
Combining the tree and the character data
```{r}
knitr::kable(treeWData$data[,1:4]) #Here's the data
```
Challenge 3: Uniting anchovy characters with the tree
========================================================
type: prompt
You've already read in the anchovy phylogeny. Now read in
the character table, Bloom_etal_2018_Reduced_Dataset.csv,
from [Bloom *et al*., 2018](https://doi.org/10.1093/biolinnean/bly106).
How many taxa are represented in the phylogeny *and* the
character dataset?
Challenge 3: Uniting anchovy characters with the tree
========================================================
type: prompt
```{r fig.width = 20, fig.height = 8, fig.show='hold'}
anchovyCharacters <- read.csv(file = "Data/Bloom_etal_2018_Reduced_Dataset.csv",
row.names = 1)
anchovyTreeWData <- treedata(anchovyTree, anchovyCharacters, sort = T);
plot(anchovyTreeWData$phy, main = "Anchovies!")
paste0("There are ", nrow(anchovyTreeWData$data), " taxa represented in both datasets.")
```
Plotting Characters on Trees
===============================================================
type: section
Plotting Characters on Trees
====================================
- Discrete traits
- Continuous traits
Plotting Characters on Trees: Discrete traits
===============================================================
Plotting discrete traits on tips.
```{r, eval = F}
library(RColorBrewer) # Accessory package with better color
#Entering in discrete tip values
discChar <- c(1, 1, 1, 3, 3, 1, 2, 2, 2, 2, 1)
#Plotting
plot(treeWData$phy, main = "Preferred prey", cex.main = 4,
label.offset = 2.5, no.margin = F, cex = 3)
#Setting up colors.
reconCol <- brewer.pal(3, "RdYlBu")
#Plot tips
tiplabels(text = rep(" ", 11), tip = seq(1,11,1), cex = 3,
frame = "circle", bg = reconCol[discChar])
#Plot legend
legend(x = 0, y = 5, fill = reconCol, bty = "n", cex = 3,
legend = c("Sardines", "Pompano", "Hamburgers"))
```
Plotting Characters on Trees: Discrete traits
===============================================================
Plotting discrete traits on tips.
```{r, echo = F, fig.width = 25, fig.height = 15}
library(RColorBrewer); # Accessory package with better color
#Entering in discrete tip values
discChar <- c(1, 1, 1, 3, 3, 1, 2, 2, 2, 2, 1)
#Plotting
plot(treeWData$phy, main = "Preferred prey", cex.main = 4,
label.offset = 2.5, no.margin = F, cex = 3)
#Setting up colors.
reconCol <- brewer.pal(3, "RdYlBu")
#Plot tips
tiplabels(text = rep(" ", 11), tip = seq(1,11,1), cex = 3,
frame = "circle", bg = reconCol[discChar])
#Plot legend
legend(x = 0, y = 5, fill = reconCol, bty = "n", cex = 3,
legend = c("Sardines", "Pompano", "Hamburgers"))
```
Challenge 4: Plotting anchovy characters on the tree
========================================================
type: prompt
You have a tree united with characters. It's plotting time!
Your challenge: Color-code the tip labels according to whether a species is diadromous or not.
Challenge 4: Plotting anchovy characters on the tree
========================================================
type: prompt
```{r fig.width = 20, fig.height = 8, eval=F}
# Set up colors
labelCols <- c("red", "blue");
diadLabs <- labelCols[as.factor(anchovyTreeWData$data[,3])]
#Plotting
plot(anchovyTreeWData$phy, main = "Diadromy", cex.main = 4,
no.margin = F, cex = 3,
label.offset = 2.5)
tiplabels(text = rep(" ", length(anchovyTreeWData$phy$tip.label)),
cex = 1, frame = "circle", bg = diadLabs)
#Plot legend
legend(x = 0, y = 50, bty = "n", cex = 2,
fill = labelCols,
legend = c("Diadromous", "Non-diadromous")
```
Challenge 4: Plotting anchovy characters on the tree
========================================================
type: prompt
```{r fig.width = 30, fig.height = 15, echo=F}
# Set up colors
labelCols <- c("red", "blue");
diadLabs <- labelCols[as.factor(anchovyTreeWData$data[,3])]
#Plotting
plot(anchovyTreeWData$phy, main = "Diadromy", cex.main = 4,
no.margin = F, cex = 3,
label.offset = 2.5, x.lim = 200)
tiplabels(text = rep(" ", length(anchovyTreeWData$phy$tip.label)),
cex = 1, frame = "circle", bg = diadLabs)
#Plot legend
legend(x = 0, y = 50, bty = "n", cex = 3,
fill = labelCols,
legend = c("Diadromous", "Non-diadromous"))
```
Plotting Characters on Trees: Continuous traits
===============================================================
Plotting continuous characters using a color gradient
```{r}
library(plotrix); #Contains a useful way of producing a color legend
#Set up colors and assigning values
colPal <- brewer.pal(9, "Reds")
normedTips <- round((treeWData$data[,8]-min(treeWData$data[,8]))/
(max(treeWData$data[,8])-min(treeWData$data[,8]))*8,0)
reconCol <- colPal[normedTips+1]
reconCol
```
Plotting Characters on Trees: Continuous traits
===============================================================
Plotting continuous characters using a color gradient
```{r, eval = F}
# Do the plot
plot(treeWData$phy, main = "Niche breadth", label.offset = 2.5,
no.margin = F)
#Label Tips
tiplabels(text = rep(" ", 11), seq(1,11,1),
cex = 0.65, frame = "circle", bg = reconCol[1:11])
#Making a key for the plot
col.labels<-c("Narrow", "Broad")
color.legend(11,0,13,4, col.labels,
colPal,gradient="y") #Numbers are plot coordinates
```
Plotting Characters on Trees: Continuous traits
===============================================================
Plotting continuous characters using a color gradient
```{r echo=FALSE, fig.width = 20, fig.height = 8}
plot(treeWData$phy, main = "Niche breadth", label.offset = 2.5, no.margin = F, cex = 3, cex.main = 4) #Set down the plot.
tiplabels(text = rep(" ", 11), seq(1,11,1), cex = 2, frame = "circle", bg = reconCol[1:11]) #Label the tips.
#Making a key for the plot
col.labels<-c("Narrow", "Broad")
color.legend(11,0,13,4,col.labels,colPal,gradient="y", cex = 3) #Numbers are plot coordinates
```
Challenge 5: Plotting continuous anchovy characters on the tree
========================================================
type: prompt
You guessed it. Time for a continuous character plot.
Your challenge: Color-code the tip labels according to log body size.
Bonus challenge: Add another tip label showing trophic position.
(Hint: check out `?tiplabels()`)
Challenge 5: Plotting continuous anchovy characters on the tree
========================================================
type: prompt
```{r}
# Set up colors
logBody <- as.numeric(anchovyTreeWData$data[,1])
colPalBody <- rev(brewer.pal(9, "Reds"))
normedTipsB <- round((logBody-min(logBody))/
(max(logBody)-min(logBody))*8,0)
tipColBody <- colPalBody[normedTipsB+1]
trophPos <- as.numeric(anchovyTreeWData$data[,2])
colPalTroph <- rev(brewer.pal(9, "Blues"))
normedTipsT <- round((trophPos-min(trophPos))/
(max(trophPos)-min(trophPos))*8,0)
tipColTroph <- colPalTroph[normedTipsT+1]
```
Challenge 5: Plotting continuous anchovy characters on the tree
========================================================
type: prompt
```{r eval=F}
#Plotting
plot(anchovyTreeWData$phy, main = "Body Size and Trophic level",
cex.main = 4, no.margin = F, cex = 3, label.offset = 5)
tiplabels(cex = 3, adj = 1, pch = 21, bg = tipColBody)
tiplabels(cex = 3, adj = 3.5, pch = 21, bg = tipColTroph)
#Making keys for the plot
col.labels<- round(c(min(
as.numeric(anchovyTreeWData$data[,1])),
max(as.numeric(anchovyTreeWData$data[,1]))),2)
text(5,46, "Body Size", cex = 3)
color.legend(0,40,4,44,col.labels,rev(colPalBody),
gradient="y", cex = 3, align = "rb")
col.labels<-round(c(min(
as.numeric(anchovyTreeWData$data[,2])),
max(as.numeric(anchovyTreeWData$data[,2]))),2)
text(5,36, "Trophic Level", cex = 3)
color.legend(0,30,4,34,col.labels,rev(colPalTroph),
gradient="y", cex = 3, align = "rb")
```
Challenge 5: Plotting continuous anchovy characters on the tree
========================================================
type: prompt
```{r fig.width = 30, fig.height = 15, echo=F}
#Plotting
plot(anchovyTreeWData$phy, main = "Body Size and Trophic level", cex.main = 4,
no.margin = F, cex = 3, label.offset = 5)
tiplabels(cex = 3, adj = 1, pch = 21, bg = tipColBody)
tiplabels(cex = 3, adj = 3.5, pch = 21, bg = tipColTroph)
#Making a key for the plot
col.labels<-round(c(min(as.numeric(anchovyTreeWData$data[,1])), max(as.numeric(anchovyTreeWData$data[,1]))),2)
text(5,46, "Body Size", cex = 3)
color.legend(0,40,4,44,col.labels,rev(colPalBody),gradient="y", cex = 3, align = "rb")
#Making a key for the plot
col.labels<-round(c(min(as.numeric(anchovyTreeWData$data[,2])), max(as.numeric(anchovyTreeWData$data[,2]))),2)
text(5,36, "Trophic Level", cex = 3)
color.legend(0,30,4,34,col.labels,rev(colPalTroph),gradient="y", cex = 3, align = "rb")
```
The Plan
====================================
type: section
- Introduction
- Loading and Plotting Phylogenies
- Character Data
- Modeling Character Evolution
- **Calculating Phylogenetic Signal**
Calculating Phylogenetic Signal
====================================
type: section
Calculating Phylogenetic Signal
====================================
- The basic function
- Setting up for the loop
- The loop
- The results
Phylogenetic signal: The basic function
===============================================================
- Can evaluate Pagel's Lambda or Blomberg's K
- Lambda: scaling for correlations between species relative to correlation expected under Brownian evolution
- K: scaled ratio of among-species variance to contrasts variance
```{r}
phytools::phylosig(treeWData$phy, x=treeWData$data[,1],method = "K")
```
Phylogenetic signal: Setting up for the loop
===============================================================
```{r}
sigTable <- matrix(data = NA, ncol = 4, nrow = ncol(treeWData$data))
rownames(sigTable) <- colnames(treeWData$data)
colnames(sigTable) <- c("Lambda", "Lambda P-value", "K", "K P-value")
```
Phylogenetic signal: The loop
===============================================================
Pagel's Lambda, Blomberg's K, and their respective P-values for each character
```{r}
count <- 1
while(count <= ncol(treeWData$data)){
temp <- phytools::phylosig(treeWData$phy, treeWData$data[,count],
method = "lambda", test = T); #Calculate Pagel's lambda
sigTable[count,1] <- temp$lambda
sigTable[count,2] <- temp$P
temp <- phytools::phylosig(treeWData$phy, treeWData$data[,count],
method = "K", test = T); #Calculate Blomberg's k
sigTable[count,3] <- temp$K
sigTable[count,4] <- temp$P
count <- count + 1
}
```
Phylogenetic signal: The results
===============================================================
Et voila!
```{r}
knitr::kable(sigTable)
```
Challenge 5: Anchovy character evolution
========================================================
type: prompt
What is the phylogenetic signal for log body size and trophic position in anchovies?
Challenge 5: Anchovy phylogenetic signal
========================================================
type: prompt
Step 1: Set up the data and table for results.
```{r}
# Data
chovyCharTab <- cbind(as.numeric(anchovyTreeWData$data[,1]),as.numeric(anchovyTreeWData$data[,2]))
rownames(chovyCharTab) <- rownames(anchovyTreeWData$data)
colnames(chovyCharTab) <- colnames(anchovyTreeWData$data)[1:2]
#Set up a table for results
sigTable <- matrix(data = NA, ncol = 4, nrow = ncol(chovyCharTab))
rownames(sigTable) <- colnames(chovyCharTab)
colnames(sigTable) <- c("Lambda", "Lambda P-value", "K", "K P-value")
```
Challenge 5: Anchovy phylogenetic signal
========================================================
type: prompt
Step 2: Loop through each column.
```{r}
#Loop to calculate Blomberg's K and P-value for each character
count <- 1
while(count <= ncol(chovyCharTab)){
temp <- phytools::phylosig(anchovyTreeWData$phy, chovyCharTab[,count],
method = "lambda", test = T); #Calculate Pagel's lambda
sigTable[count,1] <- temp$lambda
sigTable[count,2] <- temp$P
temp <- phytools::phylosig(anchovyTreeWData$phy, chovyCharTab[,count],
method = "K", test = T) #Calculate Blomberg's k
sigTable[count,3] <- temp$K
sigTable[count,4] <- temp$P
count <- count + 1
}
```
Challenge 5: Anchovy phylogenetic signal
========================================================
type: prompt
Step 3: How'd we do?
```{r}
knitr::kable(sigTable)
```
Further Reading
====================================
type: section
Further Reading
========================================================
Analysis of Phylogenetics and Evolution with R
* By Emmanuel Paradis
+ Lead author of ape package
* http://ape-package.ird.fr/APER.html
Phytools
* Another CompPhy R package popularly used
* http://blog.phytools.org/