-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmlp.py
62 lines (43 loc) · 2.15 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Code based on https://github.com/amazon-science/object-centric-learning-framework/blob/main/ocl
import torch
from torch import nn
class MlpDecoder(nn.Module):
"""Decoder that takes object representations and reconstructs patches.
Args:
object_dim: Dimension of objects representations.
output_dim: Dimension of each patch.
num_patches: Number of patches P to reconstruct.
hidden_features: Dimension of hidden layers.
"""
def __init__(self, object_dim, output_dim, num_patches, hidden_features = 2048):
super().__init__()
self.output_dim = output_dim
self.num_patches = num_patches
self.pos_embed = nn.Parameter(torch.randn(1, num_patches, object_dim) * 0.02)
self.decoder = build_mlp(object_dim, output_dim + 1, hidden_features)
def forward(self, encoder_output):
initial_shape = encoder_output.shape[:-1]
encoder_output = encoder_output.flatten(0, -2)
encoder_output = encoder_output.unsqueeze(1).expand(-1, self.num_patches, -1)
# Simple learned additive embedding as in ViT
object_features = encoder_output + self.pos_embed
output = self.decoder(object_features)
output = output.unflatten(0, initial_shape)
# Split out alpha channel and normalize over slots.
decoded_patches, alpha = output.split([self.output_dim, 1], dim=-1)
alpha = alpha.softmax(dim=-3)
reconstruction = torch.sum(decoded_patches * alpha, dim=-3)
masks = alpha.squeeze(-1)
return reconstruction, masks
def build_mlp(input_dim = int, output_dim = int, hidden_features = 2048, n_hidden_layers = 3):
layers = []
current_dim = input_dim
features = [hidden_features]*n_hidden_layers
for n_features in features:
layers.append(nn.Linear(current_dim, n_features))
nn.init.zeros_(layers[-1].bias)
layers.append(nn.ReLU(inplace=True))
current_dim = n_features
layers.append(nn.Linear(current_dim, output_dim))
nn.init.zeros_(layers[-1].bias)
return nn.Sequential(*layers)