-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathviz.py
241 lines (191 loc) · 9.41 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import matplotlib as mpl
import matplotlib.pyplot as plt
import shutil
import os
import sys
# Add all the python paths needed to execute when using Python 3.6
sys.path.append(os.path.join(os.path.dirname(__file__), "models"))
sys.path.append(os.path.join(os.path.dirname(__file__), "models/arc"))
sys.path.append(os.path.join(os.path.dirname(__file__), "skiprnn_pytorch"))
sys.path.append(os.path.join(os.path.dirname(__file__), "models/wrn"))
import time
import numpy as np
from datetime import datetime, timedelta
from logger import Logger
import torch
import torch.nn as nn
from sklearn.metrics import accuracy_score
import shutil
from models import models
from models.models import ArcBinaryClassifier
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from option import Options, tranform_options
# Omniglot dataset
from omniglotDataLoader import omniglotDataLoader
from dataset.omniglot import Omniglot
from dataset.omniglot import Omniglot_Pairs
from dataset.omniglot import OmniglotOneShot
# Mini-imagenet dataset
from miniimagenetDataLoader import miniImagenetDataLoader
from dataset.mini_imagenet import MiniImagenet
from dataset.mini_imagenet import MiniImagenetPairs
from dataset.mini_imagenet import MiniImagenetOneShot
# Banknote dataset
from dataset.banknote_pytorch import FullBanknoteROI
from models.conv_cnn import ConvCNNFactory
from models.fullContext import FullContextARC
from models.naiveARC import NaiveARC
from do_epoch_fns import do_epoch_ARC, do_epoch_ARC_unroll, do_epoch_naive_full
import arc_train
import arc_val
import arc_test
import context_train
import context_val
import context_test
import multiprocessing
import cv2
from torch.optim.lr_scheduler import ReduceLROnPlateau
# CUDA_VISIBLE_DEVICES == 1 (710) / CUDA_VISIBLE_DEVICES == 0 (1070)
#import os
#os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
#os.environ["CUDA_VISIBLE_DEVICES"]="0"
def display(opt, image1, mask1, image2, mask2, name="no_name.png"):
_, ax = plt.subplots(1, 2)
# a heuristic for deciding cutoff
masking_cutoff = 2.4 / (opt.arc_glimpseSize)**2
mask1 = (mask1 > masking_cutoff).data.numpy()
mask1 = np.ma.masked_where(mask1 == 0, mask1)
mask2 = (mask2 > masking_cutoff).data.numpy()
mask2 = np.ma.masked_where(mask2 == 0, mask2)
ax[0].imshow(image1, cmap=mpl.cm.bone)
ax[0].imshow(mask1, interpolation="nearest", cmap=mpl.cm.jet_r, alpha=0.7)
ax[1].imshow(image2, cmap=mpl.cm.bone)
ax[1].imshow(mask2, interpolation="nearest", cmap=mpl.cm.ocean, alpha=0.7)
plt.savefig(os.path.join('D:/PhD/images/', name))
plt.close()
def visualize(index = 2):
# change parameters
options = Options().parse()
#options = Options().parse() if options is None else options
options = tranform_options(index, options)
# use cuda?
options.cuda = torch.cuda.is_available()
cudnn.benchmark = True # set True to speedup
train_mean = None
train_std = None
if os.path.exists(os.path.join(options.save, 'mean.npy')):
train_mean = np.load(os.path.join(options.save, 'mean.npy'))
train_std = np.load(os.path.join(options.save, 'std.npy'))
if options.datasetName == 'miniImagenet':
dataLoader = miniImagenetDataLoader(type=MiniImagenetPairs, opt=options)
elif options.datasetName == 'omniglot':
dataLoader = omniglotDataLoader(type=Omniglot_Pairs, opt=options, train_mean=train_mean,
train_std=train_std)
else:
pass
# Get the params
opt = dataLoader.opt
# Use the same seed to split the train - val - test
if os.path.exists(os.path.join(options.save, 'dataloader_rnd_seed_arc.npy')):
rnd_seed = np.load(os.path.join(options.save, 'dataloader_rnd_seed_arc.npy'))
else:
rnd_seed = np.random.randint(0, 100000)
np.save(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy'), rnd_seed)
# Get the DataLoaders from train - val - test
train_loader, val_loader, test_loader = dataLoader.get(rnd_seed=rnd_seed)
train_mean = dataLoader.train_mean
train_std = dataLoader.train_std
if not os.path.exists(os.path.join(options.save, 'mean.npy')):
np.save(os.path.join(opt.save, 'mean.npy'), train_mean)
np.save(os.path.join(opt.save, 'std.npy'), train_std)
if opt.cuda:
models.use_cuda = True
if opt.name is None:
# if no name is given, we generate a name from the parameters.
# only those parameters are taken, which if changed break torch.load compatibility.
#opt.name = "train_{}_{}_{}_{}_{}_wrn".format(str_model_fn, opt.numGlimpses, opt.glimpseSize, opt.numStates,
opt.name = "{}_{}_{}_{}_{}_{}_wrn".format(opt.naive_full_type,
"fcn" if opt.apply_wrn else "no_fcn",
opt.arc_numGlimpses,
opt.arc_glimpseSize, opt.arc_numStates,
"cuda" if opt.cuda else "cpu")
print("[{}]. Will start training {} with parameters:\n{}\n\n".format(multiprocessing.current_process().name,
opt.name, opt))
# make directory for storing models.
models_path = os.path.join(opt.save, opt.name)
if not os.path.isdir(models_path):
os.makedirs(models_path)
else:
shutil.rmtree(models_path)
fcn = None
convCNN = None
if opt.apply_wrn:
# Convert the opt params to dict.
optDict = dict([(key, value) for key, value in opt._get_kwargs()])
convCNN = ConvCNNFactory.createCNN(opt.wrn_name_type, optDict)
if opt.wrn_load:
# Load the model in fully convolutional mode
fcn, params, stats = convCNN.load(opt.wrn_load, fully_convolutional = True)
else:
fcn = convCNN.create(fully_convolutional = True)
# initialise the model
discriminator = ArcBinaryClassifier(num_glimpses=opt.arc_numGlimpses,
glimpse_h=opt.arc_glimpseSize,
glimpse_w=opt.arc_glimpseSize,
channels=opt.arc_nchannels,
controller_out=opt.arc_numStates,
attn_type = opt.arc_attn_type,
attn_unroll = opt.arc_attn_unroll,
attn_dense=opt.arc_attn_dense)
# load from a previous checkpoint, if specified.
if opt.arc_load is not None and os.path.exists(opt.arc_load):
if torch.cuda.is_available():
discriminator.load_state_dict(torch.load(opt.arc_load))
else:
discriminator.load_state_dict(torch.load(opt.arc_load, map_location=torch.device('cpu')))
if opt.cuda:
discriminator.cuda()
# Set for the first batch a random seed for AumentationAleju
train_loader.dataset.agumentation_seed = int(np.random.rand() * 1000)
for batch_idx, (data, label) in enumerate(train_loader):
if opt.cuda:
data = data.cuda()
label = label.cuda()
inputs = Variable(data, requires_grad=False)
targets = Variable(label)
batch_size, npair, nchannels, x_size, y_size = inputs.shape
inputs = inputs.view(batch_size * npair, nchannels, x_size, y_size)
if fcn:
inputs = fcn(inputs)
_ , nfilters, featx_size, featy_size = inputs.shape
inputs = inputs.view(batch_size, npair, nfilters, featx_size, featy_size)
#features, updated_states = discriminator(inputs)
all_hidden = discriminator.arc._forward(inputs)
glimpse_params = torch.tanh(discriminator.arc.glimpser(all_hidden)) # return [num_glimpses*2,batchsize,(x, y, delta)]
sample = data[0]
_, channels, height, witdth = sample.shape
# separate the masks of each image.
masks1 = []
masks2 = []
for i in range(glimpse_params.shape[0]):
mask = discriminator.arc.glimpse_window.get_attention_mask(glimpse_params[i], mask_h=height, mask_w=witdth)
if i % 2 == 1: # the first image outputs the hidden state for the next image
masks1.append(mask)
else:
masks2.append(mask)
channels = 3
for glimpse_i, (mask1, mask2) in enumerate(zip(masks1, masks2)):
for batch_i in range(data.shape[0]):
if len(train_mean.shape) == 1:
sample_0 = ((data[batch_i,0].data.cpu().numpy().transpose(1,2,0) * train_std + train_mean)*255.0).astype(np.uint8)
sample_1 = ((data[batch_i,1].data.cpu().numpy().transpose(1,2,0) * train_std + train_mean)*255.0).astype(np.uint8)
else:
sample_0 = ((data[batch_i,0].data.cpu().numpy().transpose(1,2,0) * train_std.transpose(1,2,0) + train_mean.transpose(1,2,0))*255.0).astype(np.uint8)
sample_1 = ((data[batch_i,1].data.cpu().numpy().transpose(1,2,0) * train_std.transpose(1,2,0) + train_mean.transpose(1,2,0))*255.0).astype(np.uint8)
if sample_0.shape[2] == 1:
sample_0 = np.repeat(sample_0,3,axis=2)
sample_1 = np.repeat(sample_1,3,axis=2)
display(opt, sample_0, mask1[batch_i], sample_1, mask2[batch_i],"img_batch_%d_glimpse_%d.png" % (batch_i,glimpse_i))
if __name__ == "__main__":
visualize()