-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbaselineSiamese.py
592 lines (493 loc) · 25.8 KB
/
baselineSiamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import os
import sys
# Add all the python paths needed to execute when using Python 3.6
sys.path.append(os.path.join(os.path.dirname(__file__), "models"))
sys.path.append(os.path.join(os.path.dirname(__file__), "models/wrn"))
import time
import numpy as np
from datetime import datetime, timedelta
from logger import Logger
import torch
import torch.nn
import torch.nn.functional as F
from sklearn.metrics import accuracy_score, roc_curve
import shutil
from tqdm import tqdm
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from option import Options, tranform_options
# Omniglot dataset
from omniglotDataLoader import omniglotDataLoader
from dataset.omniglot import Omniglot, OmniglotPairs
# Mini-imagenet dataset
from miniimagenetDataLoader import miniImagenetDataLoader
from dataset.mini_imagenet import MiniImagenet, MiniImagenetPairs
# Banknote dataset
from banknoteDataLoader import banknoteDataLoader
from dataset.banknote_pytorch import FullBanknote, FullBanknotePairs
# FCN
from models.conv_cnn import ConvCNNFactory
import ntpath
import multiprocessing
import cv2
from torch.optim.lr_scheduler import ReduceLROnPlateau
from sklearn.metrics import ranking
import pdb
def path_leaf(path):
head, tail = ntpath.split(path)
return tail or ntpath.basename(head)
def compute_accuracy_roc(labels, predictions):
'''Compute ROC accuracy with a range of thresholds on distances.'''
fpr, tpr, thresholds = roc_curve(labels, predictions, pos_label=1)
fnr = 1 - tpr
tnr = 1 - fpr
max_acc = max(0.5*(tpr+tnr))
return max_acc, thresholds
class ContrastiveLoss(torch.nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
Label: 0 if genuine, 1 if imposter
"""
def __init__(self, margin=0.2):
super(ContrastiveLoss, self).__init__()
self.margin = margin
def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2)
loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
return loss_contrastive
def do_epoch(epoch, repetitions, opt, data_loader, fcn, logger, optimizer=None):
all_probs = []
all_labels = []
#acc_epoch = []
auc_epoch = []
auc_std_epoch = []
loss_epoch = []
n_repetitions = 0
while n_repetitions < repetitions:
#acc_batch = []
auc_batch = []
loss_batch = []
# generate new pairs
data_loader.dataset.generate_pairs(opt.batchSize)
# set new paths to tmp data
data_loader.dataset.set_path_tmp_epoch_iteration(epoch,n_repetitions)
for batch_idx, (data, label) in enumerate(data_loader):
if opt.cuda:
data = data.cuda()
label = label.cuda()
if optimizer:
inputs = Variable(data, requires_grad=True)
else:
inputs = Variable(data, requires_grad=False)
targets = Variable(label)
feats1 = fcn.forward_features(inputs[:, 0, :, :, :])
feats2 = fcn.forward_features(inputs[:, 1, :, :, :])
#feats1 = fcn.features(inputs[:, 0, :, :, :])
#feats2 = fcn.features(inputs[:, 1, :, :, :])
feats1 = feats1 / (feats1.norm(p=2, dim=1, keepdim=True) + 1e-12).expand_as(feats1)
feats2 = feats2 / (feats2.norm(p=2, dim=1, keepdim=True) + 1e-12).expand_as(feats2)
logsoft_feats2 = torch.nn.LogSoftmax(dim=1)(fcn.forward_classifier(feats2))
# LOSS 1 - Constrastive loss
loss_fn_1 = ContrastiveLoss()
if opt.cuda:
loss_fn_1 = loss_fn_1.cuda()
#ContrastiveLoss: Label: 0 if genuine, 1 if imposter -> ((targets-1).abs())
loss1 = loss_fn_1(feats1, feats2, ((targets-1).abs()).float())
loss_fn_2 = torch.nn.NLLLoss()
if opt.cuda:
loss_fn_2 = loss_fn_2.cuda()
# LOSS 2 - Involve the classifier
loss2 = loss_fn_2(logsoft_feats2, targets.long())
# Total loss
loss = loss1 + loss2
loss_batch.append(loss.item())
if optimizer:
optimizer.zero_grad()
loss.backward()
optimizer.step()
# calculate distances. Similar samples should be close, dissimilar should be large.
#dists = torch.sqrt(torch.sum((feats1 - feats2) ** 2, 1)) # euclidean distance
#acc, thresholds = compute_accuracy_roc(targets, predictions=dists)
probs = torch.exp(logsoft_feats2)
max_index = probs.max(dim = 1)[1]
acc = (max_index == targets.long()).sum().float()/len(targets)
#acc_batch.append(acc.item())
#auc = ranking.roc_auc_score(targets.long().data.cpu().numpy(), probs.cpu().data.numpy()[:,1], average=None, sample_weight=None)
#auc_batch.append(auc)
all_probs.append(probs.cpu().data.numpy()[:,1])
all_labels.append(targets.long().data.cpu().numpy())
auc = ranking.roc_auc_score([item for sublist in all_labels for item in sublist],
[item for sublist in all_probs for item in sublist], average=None, sample_weight=None)
auc_epoch.append(auc)
#acc_epoch.append(np.mean(acc_batch))
#auc_epoch.append(np.mean(auc_batch))
#auc_std_epoch.append(np.std(auc_batch))
loss_epoch.append(np.mean(loss_batch))
# remove data repetition
data_loader.dataset.remove_path_tmp_epoch(epoch,n_repetitions)
# next repetition
n_repetitions += 1
# remove data epoch
data_loader.dataset.remove_path_tmp_epoch(epoch)
#acc_epoch = np.mean(acc_epoch)
#auc_epoch = np.mean(auc_epoch)
#auc_std_epoch = np.mean(auc_std_epoch)
auc_std_epoch = np.std(auc_epoch)
auc_epoch = np.mean(auc_epoch)
loss_epoch = np.mean(loss_epoch)
#return acc_epoch, loss_epoch
return auc_epoch, auc_std_epoch, loss_epoch
def do_epoch_classification(epoch, repetitions, opt, data_loader, fcn, logger):
auc_epoch = []
auc_std_epoch = []
n_repetitions = 0
all_probs = []
all_labels = []
while n_repetitions < repetitions:
#acc_batch = []
auc_batch = []
for batch_idx, (data, label) in enumerate(tqdm(data_loader)):
if opt.cuda:
data = data.cuda()
label = label.cuda()
inputs = Variable(data, requires_grad=False)
targets = Variable(label, requires_grad=False)
feats = fcn.forward_features(inputs)
feats = feats / (feats.norm(p=2, dim=1, keepdim=True) + 1e-12).expand_as(feats)
logsoft_feats = torch.nn.LogSoftmax(dim=1)(fcn.forward_classifier(feats))
probs = torch.exp(logsoft_feats)
max_index = probs.max(dim = 1)[1]
#acc = (max_index == targets.long()).sum().float()/len(targets)
#acc_batch.append(acc.item())
#auc = ranking.roc_auc_score(targets.long().data.cpu().numpy(), probs.cpu().data.numpy()[:,1], average=None, sample_weight=None)
#auc_batch.append(auc)
all_probs.append(probs.cpu().data.numpy()[:,1])
all_labels.append(targets.long().data.cpu().numpy())
#acc_epoch.append(np.mean(acc_batch))
#pdb.set_trace()
auc = ranking.roc_auc_score([item for sublist in all_labels for item in sublist],
[item for sublist in all_probs for item in sublist], average=None, sample_weight=None)
auc_epoch.append(auc)
#auc_std_epoch.append(np.mean(auc_batch))
n_repetitions += 1
#acc_epoch = np.mean(acc_epoch)
auc_std_epoch = np.std(auc_epoch)
auc_epoch = np.mean(auc_epoch)
#return acc_epoch
return auc_epoch, auc_std_epoch, None
def data_generation(opt):
# use cuda?
opt.cuda = torch.cuda.is_available()
cudnn.benchmark = True # set True to speedup
# Load mean/std if exists
train_mean = None
train_std = None
if os.path.exists(os.path.join(opt.save, 'mean.npy')):
train_mean = np.load(os.path.join(opt.save, 'mean.npy'))
train_std = np.load(os.path.join(opt.save, 'std.npy'))
# Load Dataset
opt.setType='set1'
dataLoader = banknoteDataLoader(type=FullBanknotePairs, opt=opt, fcn=None, train_mean=train_mean,
train_std=train_std)
# Use the same seed to split the train - val - test
if os.path.exists(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy')):
rnd_seed = np.load(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy'))
else:
rnd_seed = np.random.randint(0, 100000)
np.save(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy'), rnd_seed)
# Get the DataLoaders from train - val - test
train_loader, val_loader, test_loader = dataLoader.get(rnd_seed=rnd_seed)
train_mean = dataLoader.train_mean
train_std = dataLoader.train_std
if not os.path.exists(os.path.join(opt.save, 'mean.npy')):
np.save(os.path.join(opt.save, 'mean.npy'), train_mean)
np.save(os.path.join(opt.save, 'std.npy'), train_std)
epoch = 0
try:
while epoch < opt.train_num_batches:
# wait to check if it is neede more data
lst_epochs = train_loader.dataset.getFolderEpochList()
if len(lst_epochs) > 50:
time.sleep(10)
# In case there is more than one generator.
# get the last folder epoch executed and update the epoch accordingly
if len(lst_epochs)>0:
epoch = np.array([path_leaf(str).split('_')[-1] for str in lst_epochs if 'train' in str]).astype(np.int).max()
epoch += 1
## set information of the epoch in the dataloader
repetitions = 1
start_time = datetime.now()
for repetition in range(repetitions):
train_loader.dataset.set_path_tmp_epoch_iteration(epoch,repetition)
for batch_idx, (data, label) in enumerate(train_loader):
noop = 0
time_elapsed = datetime.now() - start_time
print ("[train]", "epoch: ", epoch, ", time: ", time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000)
if epoch % opt.val_freq == 0:
repetitions = opt.val_num_batches
start_time = datetime.now()
for repetition in range(repetitions):
val_loader.dataset.set_path_tmp_epoch_iteration(epoch,repetition)
for batch_idx, (data, label) in enumerate(val_loader):
noop = 0
time_elapsed = datetime.now() - start_time
print ("[val]", "epoch: ", epoch, ", time: ", time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000)
'''
repetitions = opt.test_num_batches
start_time = datetime.now()
for repetition in range(repetitions):
test_loader.dataset.set_path_tmp_epoch_iteration(epoch,repetition)
for batch_idx, (data, label) in enumerate(test_loader):
noop = 0
time_elapsed = datetime.now() - start_time
print ("[test]", "epoch: ", epoch, ", time: ", time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000)
'''
print ("[%s] ... generating data done" % multiprocessing.current_process().name)
except KeyboardInterrupt:
pass
###################################
def server_processing(opt):
# use cuda?
opt.cuda = torch.cuda.is_available()
cudnn.benchmark = True # set True to speedup
# Load mean/std if exists
train_mean = None
train_std = None
if os.path.exists(os.path.join(opt.save, 'mean.npy')):
train_mean = np.load(os.path.join(opt.save, 'mean.npy'))
train_std = np.load(os.path.join(opt.save, 'std.npy'))
# Load FCN
# Convert the opt params to dict.
optDict = dict([(key, value) for key, value in opt._get_kwargs()])
fcn = ConvCNNFactory.createCNN(opt.wrn_name_type, optDict)
if opt.wrn_load and os.path.exists(opt.wrn_load):
if torch.cuda.is_available():
fcn.load_state_dict(torch.load(opt.wrn_load))
else:
fcn.load_state_dict(torch.load(opt.wrn_load, map_location=torch.device('cpu')))
if opt.cuda:
fcn.cuda()
# Load Dataset
opt.setType='set1'
if opt.datasetName == 'miniImagenet':
dataLoader = miniImagenetDataLoader(type=MiniImagenetPairs, opt=opt, fcn=fcn)
elif opt.datasetName == 'omniglot':
dataLoader = omniglotDataLoader(type=OmniglotPairs, opt=opt, fcn=fcn,train_mean=train_mean,
train_std=train_std)
elif opt.datasetName == 'banknote':
dataLoader = banknoteDataLoader(type=FullBanknotePairs, opt=opt, fcn=fcn, train_mean=train_mean,
train_std=train_std)
else:
pass
# Use the same seed to split the train - val - test
if os.path.exists(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy')):
rnd_seed = np.load(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy'))
else:
rnd_seed = np.random.randint(0, 100000)
np.save(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy'), rnd_seed)
# Get the DataLoaders from train - val - test
train_loader, val_loader, test_loader = dataLoader.get(rnd_seed=rnd_seed)
train_mean = dataLoader.train_mean
train_std = dataLoader.train_std
if not os.path.exists(os.path.join(opt.save, 'mean.npy')):
np.save(os.path.join(opt.save, 'mean.npy'), train_mean)
np.save(os.path.join(opt.save, 'std.npy'), train_std)
# Remove memory
del dataLoader
if opt.name is None:
# if no name is given, we generate a name from the parameters.
# only those parameters are taken, which if changed break torch.load compatibility.
#opt.name = "train_{}_{}_{}_{}_{}_wrn".format(str_model_fn, opt.numGlimpses, opt.glimpseSize, opt.numStates,
opt.name = "{}_{}_{}_{}_{}_{}_wrn".format(opt.naive_full_type,
"fcn" if opt.apply_wrn else "no_fcn",
opt.arc_numGlimpses,
opt.arc_glimpseSize, opt.arc_numStates,
"cuda" if opt.cuda else "cpu")
print("[{}]. Will start training {} with parameters:\n{}\n\n".format(multiprocessing.current_process().name,
opt.name, opt))
# make directory for storing models.
models_path = os.path.join(opt.save, opt.name)
if not os.path.isdir(models_path):
os.makedirs(models_path)
else:
shutil.rmtree(models_path)
# create logger
logger = Logger(models_path)
# optimizer
optimizer = torch.optim.Adam(params=fcn.parameters(), lr=opt.arc_lr)
scheduler = ReduceLROnPlateau(optimizer, mode='min', patience=opt.arc_lr_patience, verbose=True)
# load preexisting optimizer values if exists
if os.path.exists(opt.arc_optimizer_path):
if torch.cuda.is_available():
optimizer.load_state_dict(torch.load(opt.arc_optimizer_path))
else:
optimizer.load_state_dict(torch.load(opt.arc_optimizer_path, map_location=torch.device('cpu')))
print('Loading set 2 ...')
opt.setType='set2'
if opt.datasetName == 'miniImagenet':
dataLoader2 = miniImagenetDataLoader(type=MiniImagenet, opt=opt, fcn=None)
elif opt.datasetName == 'omniglot':
dataLoader2 = omniglotDataLoader(type=Omniglot, opt=opt, fcn=None,train_mean=train_mean,
train_std=train_std)
elif opt.datasetName == 'banknote':
dataLoader2 = banknoteDataLoader(type=FullBanknotePairs, opt=opt, fcn=None, train_mean=train_mean,
train_std=train_std)
else:
pass
_, _, test_loader2 = dataLoader2.get(rnd_seed=rnd_seed, dataPartition = [None,None,'train+val+test'])
# Remove memory
del dataLoader2
###################################
## TRAINING ARC/CONVARC
###################################
best_validation_loss = sys.float_info.max
best_auc = 0.0
saving_threshold = 1.02
epoch = 0
if opt.arc_resume == True or opt.arc_load is None:
try:
while epoch < opt.train_num_batches:
epoch += 1
fcn.train() # Set to train the network
start_time = datetime.now()
train_auc_epoch, train_std_auc_epoch, train_loss_epoch = do_epoch(epoch=epoch, repetitions=1, opt=opt, data_loader = train_loader, fcn=fcn,
logger=logger, optimizer=optimizer)
time_elapsed = datetime.now() - start_time
print ("[train]", "epoch: ", epoch, ", loss: ", train_loss_epoch, ", auc: ", train_auc_epoch, ",std_auc: ", train_std_auc_epoch, ", time: ", time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000)
logger.log_value('train_auc', train_auc_epoch)
logger.log_value('train_auc_std', train_std_auc_epoch)
logger.log_value('train_loss', train_loss_epoch)
# Reduce learning rate when a metric has stopped improving
scheduler.step(train_loss_epoch)
if epoch % opt.val_freq == 0:
fcn.eval() # set to test the network
start_time = datetime.now()
val_auc_epoch, val_std_auc_epoch, val_loss_epoch = do_epoch(epoch=epoch, repetitions=opt.val_num_batches, opt=opt, data_loader = val_loader, fcn=fcn,
logger=logger, optimizer=None)
time_elapsed = datetime.now() - start_time
print ("====" * 20, "\n", "[" + multiprocessing.current_process().name + "]" + \
"[VAL]", "epoch: ", epoch, ", loss: ", val_loss_epoch \
, ", auc: ", val_auc_epoch, ", auc std: ", val_std_auc_epoch, ", time: ", \
time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000, "ms\n", "====" * 20)
logger.log_value('val_auc', val_auc_epoch)
logger.log_value('val_auc_std', val_std_auc_epoch)
logger.log_value('val_loss', val_loss_epoch)
is_model_saved = False
#if best_validation_loss > (saving_threshold * val_loss_epoch):
if best_auc < (saving_threshold * val_auc_epoch):
print("[{}] Significantly improved validation loss from {} --> {}. auc from {} --> {}. Saving...".format(
multiprocessing.current_process().name, best_validation_loss, val_loss_epoch, best_auc, val_auc_epoch))
# save classifier
torch.save(fcn.state_dict(),opt.wrn_save)
# Save optimizer
torch.save(optimizer.state_dict(), opt.arc_optimizer_path)
# Acc-loss values
best_validation_loss = val_loss_epoch
best_auc = val_auc_epoch
is_model_saved = True
if is_model_saved:
fcn.eval() # set to test the network
start_time = datetime.now()
test_loader.dataset.mode = 'generator_processor'
test_auc_epoch, test_std_auc_epoch, _ = do_epoch(epoch=epoch, repetitions=opt.test_num_batches, opt=opt, data_loader = test_loader, fcn=fcn,
logger=logger, optimizer=None)
time_elapsed = datetime.now() - start_time
print ("====" * 20, "\n", "[" + multiprocessing.current_process().name + "]" + \
"[TEST] SET1. ", "epoch: ", epoch, ", auc: ", test_auc_epoch, ", time: ", \
time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000, "ms\n", "====" * 20)
logger.log_value('test_set1_auc', test_auc_epoch)
logger.log_value('test_set1_auc_std', test_std_auc_epoch)
start_time = datetime.now()
test_loader2.dataset.mode = 'generator_processor'
test_auc_epoch, test_std_auc_epoch, _ = do_epoch(epoch=epoch, repetitions=opt.test_num_batches, opt=opt, data_loader = test_loader2, fcn=fcn,
logger=logger)
time_elapsed = datetime.now() - start_time
print ("====" * 20, "\n", "[" + multiprocessing.current_process().name + "]" + \
"[TEST] SET2. ", "epoch: ", epoch, ", auc: ", test_auc_epoch, ", time: ", \
time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000, "ms\n", "====" * 20)
logger.log_value('test_set2_auc', test_auc_epoch)
logger.log_value('test_set2_auc_std', test_std_auc_epoch)
# just in case there is a folder not removed, remove it
train_loader.dataset.remove_path_tmp_epoch(epoch)
val_loader.dataset.remove_path_tmp_epoch(epoch)
test_loader.dataset.remove_path_tmp_epoch(epoch)
logger.step()
print ("[%s] ... training done" % multiprocessing.current_process().name)
print ("[%s], best validation auc: %.2f, best validation loss: %.5f" % (
multiprocessing.current_process().name, best_auc, best_validation_loss))
print ("[%s] ... exiting training regime " % multiprocessing.current_process().name)
except KeyboardInterrupt:
pass
###################################
# TODO: LOAD THE BEST MODEL
fcn.load_state_dict(torch.load(opt.wrn_load))
fcn.eval() # set to test the network
# Set the num val/test repetitions to 1
opt.val_num_batches = 1
opt.test_num_batches = 1
# set the mode of the dataset to generator_processor
# which generates and processes the images without saving them.
opt.mode = 'generator_processor'
# Load Dataset
opt.setType='set1'
if opt.datasetName == 'miniImagenet':
dataLoader = miniImagenetDataLoader(type=MiniImagenet, opt=opt, fcn=fcn)
elif opt.datasetName == 'omniglot':
dataLoader = omniglotDataLoader(type=Omniglot, opt=opt, fcn=fcn,train_mean=train_mean,
train_std=train_std)
elif opt.datasetName == 'banknote':
dataLoader = banknoteDataLoader(type=FullBanknote, opt=opt, fcn=fcn, train_mean=train_mean,
train_std=train_std)
else:
pass
train_loader, val_loader, test_loader = dataLoader.get(rnd_seed=rnd_seed, dataPartition = [None,None,'train+val+test'])
print ('[%s] ... Testing Set1' % multiprocessing.current_process().name)
start_time = datetime.now()
test_auc_epoch, test_auc_std_epoch, _ = do_epoch_classification(epoch=epoch, repetitions=opt.test_num_batches, opt=opt, data_loader = test_loader, fcn=fcn, logger=logger)
time_elapsed = datetime.now() - start_time
print ("====" * 20, "\n", "[" + multiprocessing.current_process().name + "]" + \
"[TEST]", "epoch: ", epoch, ", auc: ", test_auc_epoch, ", auc_std: ", test_auc_std_epoch, ", time: ", \
time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000, "ms\n", "====" * 20)
print ('[%s] ... FINISHED! ...' % multiprocessing.current_process().name)
#'''
## Get the set2 and try
print ('[%s] ... Loading Set2' % multiprocessing.current_process().name)
opt.setType='set2'
if opt.datasetName == 'miniImagenet':
dataLoader = miniImagenetDataLoader(type=MiniImagenet, opt=opt, fcn=None)
elif opt.datasetName == 'omniglot':
dataLoader = omniglotDataLoader(type=Omniglot, opt=opt, fcn=None,train_mean=None,
train_std=None)
elif opt.datasetName == 'banknote':
dataLoader = banknoteDataLoader(type=FullBanknote, opt=opt, fcn=None, train_mean=None,
train_std=None)
else:
pass
train_loader, val_loader, test_loader = dataLoader.get(rnd_seed=rnd_seed, dataPartition = [None,None,'train+val+test'])
print ('[%s] ... Testing Set2' % multiprocessing.current_process().name)
start_time = datetime.now()
test_auc_epoch, test_auc_std_epoch, _ = do_epoch_classification(epoch=epoch, repetitions=opt.test_num_batches, opt=opt, data_loader = test_loader, fcn=fcn, logger=logger)
print ("====" * 20, "\n", "[" + multiprocessing.current_process().name + "]" + \
"[TEST]", "epoch: ", epoch, ", auc: ", test_auc_epoch, ", auc_std: ", test_auc_std_epoch, ", time: ", \
time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000, "ms\n", "====" * 20)
print ('[%s] ... FINISHED! ...' % multiprocessing.current_process().name)
def train(index = None):
# change parameters
opt = Options().parse()
#opt = Options().parse() if opt is None else opt
opt = tranform_options(index, opt)
if opt.mode == 'generator':
print('Starting generator...')
data_generation(opt)
elif opt.mode == 'generator_processor':
print('Starting generator - processor no save images...')
server_processing(opt)
else:
print('Starting processor...')
server_processing(opt)
def main():
train()
if __name__ == "__main__":
main()