forked from nab0310/SpotifyML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsongExtender.py
313 lines (278 loc) · 12.9 KB
/
songExtender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import pandas as pd #Dataframe, Series
import numpy as np
import io
import sys, getopt
import spotipy
import spotipy.util as util
from spotipy.oauth2 import SpotifyClientCredentials
import random
import networkx as nx
import os
import config
NUMBER_OF_JUMPS = 30
def handle_spotify_login():
os.environ['SPOTIPY_CLIENT_ID'] = config.client_id
os.environ['SPOTIPY_CLIENT_SECRET'] = config.client_secret
os.environ['SPOTIPY_REDIRECT_URI'] = "http://localhost:8888"
username =''
client_credentials_manager = SpotifyClientCredentials(client_id=config.client_id, client_secret=config.client_secret)
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
scope = 'user-library-read playlist-read-private user-read-recently-played user-read-playback-state user-modify-playback-state'
token = util.prompt_for_user_token(username, scope)
if token:
sp = spotipy.Spotify(auth=token)
else:
print("Can't get token for", username)
return sp
sp = handle_spotify_login()
def query_yes_no(question, default="yes"):
"""Ask a yes/no question via raw_input() and return their answer.
"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
The "answer" return value is True for "yes" or False for "no".
"""
valid = {"yes": True, "y": True, "ye": True,
"no": False, "n": False}
if default is None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' "
"(or 'y' or 'n').\n")
def euclidian_distance(s1, s2):
return np.linalg.norm(s1-s2)
def weighted_euclidian_distance(s1,s2,w):
q = s1-s2
return np.sqrt((w*q*q).sum())
def calucate_distance(seg1, seg2):
pitch_dist = euclidian_distance(np.array(seg1["pitches"]),np.array(seg2["pitches"]))
timbre_dist = weighted_euclidian_distance(np.array(seg1["timbre"]), np.array(seg2["timbre"]),1)
start_loudness_dist = abs(seg1["loudness_start"] - seg2["loudness_start"])
max_loudness_dist = abs(seg1["loudness_max"] - seg2["loudness_max"])
duration_dist = abs(seg1["duration"] - seg2["duration"])
confidence_dist = abs(seg1["confidence"] - seg2["confidence"])
distance = timbre_dist + pitch_dist * 10 + start_loudness_dist + max_loudness_dist + duration_dist * 100 + confidence_dist
return distance
def getAnalysisForTrack(songID):
return sp.audio_analysis("3m9eTtBtU0xxJndQRz9MOr")
def averageSegments(segmentsToAvg):
pitches = [0,0,0,0,0,0,0,0,0,0,0,0]
timbre = [0,0,0,0,0,0,0,0,0,0,0,0]
start_loudness = 0
max_loudness = 0
duration = 0
confidence = 0
for segment in segmentsToAvg:
pitches += np.array(segment["pitches"])
timbre += np.array(segment["timbre"])
start_loudness += segment["loudness_start"]
max_loudness += segment["loudness_max"]
duration += segment["duration"]
confidence += segment["confidence"]
averagePitches = (pitches) / len(segmentsToAvg)
averageTimbre = (timbre) / len(segmentsToAvg)
start_loudness = start_loudness/len(segmentsToAvg)
max_loudness = max_loudness / len(segmentsToAvg)
duration = duration /len(segmentsToAvg)
confidence = confidence /len(segmentsToAvg)
return {"pitches" : averagePitches, "timbre" : averageTimbre, "loudness_start": start_loudness, "loudness_max": max_loudness, "duration": duration, "confidence": confidence}
def computeAverageSegments(analysis, numberOfSegmentsToAvg):
avgSegments = []
#Go though the segments by the number we want to average
for i in range(0, len(analysis["segments"]), numberOfSegmentsToAvg):
currentSegs = []
#Add segments we are looking at to array
for j in range(0, numberOfSegmentsToAvg):
currentSegs.append(analysis["segments"][i+j])
#compute the average segment of those
avgSegment = averageSegments(currentSegs)
#Initialize vars to compute the closest segment of those averaged
distanceFromAvg = sys.maxsize
closestSegmentNumber = 0
#For the segments, find the closest one to the average one, so we know where to jump
for j in range(0, numberOfSegmentsToAvg):
if calucate_distance(currentSegs[j], avgSegment) < distanceFromAvg:
closestSegmentNumber = j
avgSegments.append({"closestSegment": i + closestSegmentNumber, "avgSegment": avgSegment})
return avgSegments
def get_closest_segments_avg(segment_number, avgSegments, analysis, numOfSegmentsToGet):
segment_distance = []
for segmentObj in avgSegments:
if segmentObj["closestSegment"] != segment_number:
distance = calucate_distance(analysis["segments"][segment_number], segmentObj["avgSegment"])
timeBetween = analysis["segments"][segment_number]["start"] - analysis["segments"][segmentObj["closestSegment"]]["start"]
if(distance < 60 and distance != 0 and timeBetween > 5):
segment_distance.append({"distance": distance, "number": segmentObj["closestSegment"]})
return sorted(segment_distance, key=lambda x: x["distance"], reverse=False)[0:numOfSegmentsToGet]
def makeGraphFromAverageSegments(avgSegments, analysis):
to = []
segmentsToAddToGraph = []
fromArray = []
for i in range(0, len(analysis["segments"])):
closestSegments = get_closest_segments_avg(i, avgSegments, analysis, 4)
for segment in closestSegments:
segmentObject = {"from": i, "to": segment["number"], "distance": segment["distance"]}
reverseSegmentObject = {"from": segment["number"], "to": i, "distance": segment["distance"]}
if reverseSegmentObject not in segmentsToAddToGraph:
segmentsToAddToGraph.append(segmentObject)
sortedSegments = sorted(segmentsToAddToGraph, key=lambda x: x["distance"], reverse=False)
randomSortedSegments = random.sample(sortedSegments, NUMBER_OF_JUMPS)
wholeFromNumbers = []
for segment in randomSortedSegments:
#We want to prevent many jumps in the same second, so add from to a dict and see if the
#int value is in the map..... we have to convert from segment numbers to time values
if int(analysis["segments"][segment["from"]]["start"]) not in wholeFromNumbers:
wholeFromNumbers.append(int(analysis["segments"][segment["from"]]["start"]))
to.append(segment["to"])
fromArray.append(segment["from"])
print("Length of From Array: " + str(len(fromArray)))
print("Length of To Array: " + str(len(to)))
df = pd.DataFrame({'from':fromArray, 'to':to })
G = nx.from_pandas_edgelist(df, "from", "to")
return G
def makeBranchesToJumpAt(G):
jumps = []
sourceVerticies = []
#print(Counter(fromEdges))
for u,v in G.edges:
if random.random() < .5:
if u not in sourceVerticies:
jumps.append({"from": u, "to": v})
sourceVerticies.append(u)
else:
if v not in sourceVerticies:
jumps.append({"from": v, "to": u})
sourceVerticies.append(v)
else:
if v not in sourceVerticies:
jumps.append({"from": v, "to": u})
sourceVerticies.append(v)
else:
if u not in sourceVerticies:
jumps.append({"from": u, "to": v})
sourceVerticies.append(u)
return jumps
def playSongAndJumpAtBranches(branches, songID, analysis, G):
i=0
newlist = sorted(branches, key=lambda k: k['from'])
player = sp._get("me/player")
if player == None:
print("Spotify instance unable to be found. Please open spotify on your device or play a track to get started.")
exit(1)
sp._put("me/player/play", payload = {"uris":["spotify:track:"+songID], "offset": {"position": 0}})
sp._put("me/player/repeat?state=track")
print("We have found " + str(len(branches)) +" branches for your pleasure!")
print("Here they are: ")
for branch in newlist:
print("From " + str(analysis["segments"][branch["from"]]["start"]) + " to " + str(analysis["segments"][branch["to"]]["start"]))
while True:
while int(len(newlist)) > 0:
player = sp._get("me/player")
if player["progress_ms"] >= analysis["segments"][newlist[i]["from"]]["start"]*1000:
jump_to = analysis["segments"][newlist[i]["to"]]["start"]*1000
origin_sec = analysis["segments"][newlist[i]["from"]]["start"]
dest_sec = analysis["segments"][newlist[i]["to"]]["start"]
sp._put("me/player/seek?position_ms="+str(int(round(dest_sec * 1000))))
print("Made jump number "+str(i)+ " out of "+str(len(newlist)))
print("From " + str(origin_sec) + " to " + str(dest_sec))
#Remove the branch we jumped from
del newlist[i]
#Find next jump point
#For forward jumps.....
if origin_sec < dest_sec:
#i = i + 1
while i < len(newlist) - 1 and analysis["segments"][newlist[i]["from"]]["start"] < dest_sec:
i = i + 1
#if we are jumping backwards, we need to iterate backwards through the array and find the
#place where this segment fits in.
else:
#i = i - 1
if i == len(newlist):
i = i -1
while i > 0 and analysis["segments"][newlist[i]["to"]]["start"] > dest_sec:
i -= 1
#i=i+1
if i == len(newlist):
i = len(newlist) - 1
print("Making new branches.")
branches = makeBranchesToJumpAt(G)
newlist = sorted(branches, key=lambda k: k['from'])
i = 0
def main(argv):
songName = ''
artistName = ''
songID = ''
try:
opts, args = getopt.getopt(argv,"hs:a:u:",["song=", "artist=", "uri="])
except getopt.GetoptError:
print ("songExtender.py -s '<songName>'")
print ("songExtender.py --song '<songName>'")
print ("songExtender.py -a '<artistName>'")
print ("songExtender.py --artist '<artistName>'")
print ("songExtender.py -u '<songURI>'")
sys.exit(2)
if len(argv) < 2:
print ("songExtender.py -s '<songName>'")
print ("songExtender.py --song '<songName>'")
print ("songExtender.py -a '<artistName>'")
print ("songExtender.py --artist '<artistName>'")
print ("songExtender.py -u '<songURI>'")
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print ("songExtender.py -s '<songName>'")
sys.exit()
elif opt in ("-s", "--song"):
songName = arg
elif opt in ("-a", "--artist"):
artistName = arg
elif opt in ("-u", "--uri"):
songID = arg.split(':')[2]
if songName == '' and songID == '':
print("You must supply a song name or song URI")
print("Usage: ")
print ("songExtender.py -s '<songName>'")
print ("songExtender.py --song '<songName>'")
print ("songExtender.py -a '<artistName>'")
print ("songExtender.py --artist '<aritstName>'")
print ("songExtender.py -u '<songURI>'")
sys.exit()
if songID == '':
if artistName != '':
songResults = sp.search(q="artist:"+artistName+ " track:" + songName, type='track')
else:
songResults = sp.search(q='track:' + songName, type='track')
for song in songResults["tracks"]["items"]:
result = query_yes_no("Did you want to extend the song " + song['name'] + " by " + song["artists"][0]["name"])
if str(result) =="True":
songID = song['id']
break
if songID == '':
#prompt the user to add an artist tag to help us narrow down the search catagory or get the id directly from spotify.
print("Do you need help?")
print("Try supplying an artist with the -a or --artist tag. Remeber to enclose your query with ''")
print("Or you can go get the song URI from spotify and supply it with the -id tag. To get the URI, you should go to Spotify, click on the share for the song you want, and copy the Spotify URI. With the URI in hand, run the program again with songExtender -u spotify:track:<SongID>")
sys.exit()
analysis = getAnalysisForTrack(songID)
print("Got Analysis for song with id: "+songID)
avgSegments = computeAverageSegments(analysis, 4)
G = makeGraphFromAverageSegments(avgSegments, analysis)
branches = makeBranchesToJumpAt(G)
print("Playing song and jumping....")
print("Enjoy!!")
print("Use Ctrl + C or Ctrl + Z to quit.")
playSongAndJumpAtBranches(branches, songID, analysis, G)
if __name__ == "__main__":
main(sys.argv[1:])