Skip to content

Latest commit

 

History

History
30 lines (22 loc) · 1.24 KB

File metadata and controls

30 lines (22 loc) · 1.24 KB

Project 1

Development Team

Part 1

Given a input dataset with vectors and a query dataset, for every query vector find:

  • The true nearest neighbor of the input dataset.
  • The aproximate nearest neighbor of the input dataset.
  • The aproximate N nearest neighbors of the input dataset.
  • All vectors inside a given range R. (approximate search)

In order to find the aproximate nearest neighbor(s) we use:

Part 2

Vector Clustering.

The initialization of the clusters is done using kMeans++.

The assignment to each cluster can be performed by each of the following:

  • Lloyds assignment.
  • LSH reverse assignment using Range search.
  • Hypercube reverse assignment using Range search.