-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathapp.py
732 lines (563 loc) · 30.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import streamlit as st
import pandas as pd
import numpy as np
from fbprophet import Prophet
from fbprophet.plot import add_changepoints_to_plot
from fbprophet.diagnostics import cross_validation
from fbprophet.diagnostics import performance_metrics
from fbprophet.plot import plot_cross_validation_metric
import json
from fbprophet.serialize import model_to_json, model_from_json
import holidays
import altair as alt
import base64
import itertools
st.set_page_config(page_title="Forecast App",
page_icon="🔮",
initial_sidebar_state="collapsed")
tabs = ["Application", "About"]
page = st.sidebar.radio("Tabs", tabs)
@st.cache(persist=False, suppress_st_warning=True, show_spinner=True, allow_output_mutation=True)
def load_csv(input_metric):
df_input = None
df_input = pd.DataFrame()
df_input = pd.read_csv(input_metric, sep=',', engine='python', encoding='utf-8',
parse_dates=True)
return df_input.copy()
def prep_data(df):
df_input = df.rename({date_col: "ds", metric_col: "y"},
errors='raise', axis=1)
st.markdown(
"The selected date column is now labeled as **ds** and the values columns as **y**")
df_input = df_input[['ds', 'y']]
df_input = df_input.sort_values(by='ds', ascending=True)
df_input['ds'] = pd.to_datetime(df_input['ds'])
df_input['y'] = df_input['y'].astype(float)
return df_input.copy()
if page == "Application":
st.title('Forecast application 🧙🏻')
st.write(
'This app enables you to generate time series forecast withouth any dependencies.')
st.markdown(
"""The forecasting library used is **[Prophet](https://facebook.github.io/prophet/)**.""")
# caching.clear_cache()
df = pd.DataFrame()
st.subheader('1. Data loading 🏋️')
st.write("Import a time series csv file.")
with st.expander("Data format"):
st.write("The dataset can contain multiple columns but you will need to select a column to be used as dates and a second column containing the metric you wish to forecast. The columns will be renamed as **ds** and **y** to be compliant with Prophet. Even though we are using the default Pandas date parser, the ds (datestamp) column should be of a format expected by Pandas, ideally YYYY-MM-DD for a date or YYYY-MM-DD HH:MM:SS for a timestamp. The y column must be numeric.")
input = st.file_uploader('')
if input:
with st.spinner('Loading data..'):
df = load_csv(input)
st.write("Columns:")
st.write(list(df.columns))
columns = list(df.columns)
col1, col2 = st.columns(2)
with col1:
date_col = st.selectbox(
"Select date column", index=0, options=columns, key="date")
with col2:
metric_col = st.selectbox(
"Select values column", index=1, options=columns, key="values")
df = prep_data(df)
output = 0
if st.checkbox('Chart data', key='show'):
with st.spinner('Plotting data..'):
col1, col2 = st.columns(2)
with col1:
st.dataframe(df)
with col2:
st.write("Dataframe description:")
st.write(df.describe())
try:
line_chart = alt.Chart(df).mark_line().encode(
x='ds:T',
y="y:Q", tooltip=['ds:T', 'y']).properties(title="Time series preview").interactive()
st.altair_chart(line_chart, use_container_width=True)
except:
st.line_chart(df['y'], use_container_width=True, height=300)
st.subheader("2. Parameters configuration 🛠️")
with st.form("config"):
with st.container():
st.write('In this section you can modify the algorithm settings.')
with st.expander("Horizon"):
periods_input = st.number_input('Select how many future periods (days) to forecast.',
min_value=1, max_value=366, value=90)
with st.expander("Seasonality"):
st.markdown(
"""The default seasonality used is additive, but the best choice depends on the specific case, therefore specific domain knowledge is required. For more informations visit the [documentation](https://facebook.github.io/prophet/docs/multiplicative_seasonality.html)""")
seasonality = st.radio(label='Seasonality', options=[
'additive', 'multiplicative'])
with st.expander("Trend components"):
st.write("Add or remove components:")
daily = st.checkbox("Daily")
weekly = st.checkbox("Weekly")
monthly = st.checkbox("Monthly")
yearly = st.checkbox("Yearly")
with st.expander("Growth model"):
st.write('Prophet uses by default a linear growth model.')
st.markdown(
"""For more information check the [documentation](https://facebook.github.io/prophet/docs/saturating_forecasts.html#forecasting-growth)""")
st.write('Configure saturation (for logistic growth only )')
growth = st.radio(label='Growth model',options=['linear',"logistic"])
if growth == 'linear':
growth_settings= {
'cap':1,
'floor':0
}
cap=1
floor=1
df['cap']=1
df['floor']=0
if growth == 'logistic':
st.info('Configure saturation')
cap = st.slider('Cap',min_value=0.0,max_value=1.0,step=0.05)
floor = st.slider('Floor',min_value=0.0,max_value=1.0,step=0.05)
if floor > cap:
st.error('Invalid settings. Cap must be higher then floor.')
growth_settings={}
if floor == cap:
st.warning('Cap must be higher than floor')
else:
growth_settings = {
'cap':cap,
'floor':floor
}
df['cap']=cap
df['floor']=floor
# growth = st.radio(label='Growth model', options=[
# 'linear', "logistic"])
# saturation = st.slider(label="+/- Growth factor (%)",
# max_value=1.0,
# min_value=0.01)
#growth = st.radio(label='Growth model',options=['Linear',"Logistic"])
# if growth == 'linear':
# growth_settings= {
# 'cap':1,
# 'floor':0
# }
# cap=1
# floor=1
# df['cap']=1
# df['floor']=0
# if growth == "logistic":
# st.write('Configure saturation')
# saturation = st.slider(label="+/- Growth factor (%)",
# max_value=1.0,
# min_value=0.00)
# if input :
# last_year_df = df.tail(365).copy()
# quantil_cap = last_year_df.y.quantile(.75)
# quantil_floor = last_year_df.y.quantile(.25)
# cap=( 1 + saturation) * quantil_cap
# floor=( 1 - saturation) * quantil_floor
# st.markdown(f"Cap: {cap} \n Floor: {floor}")
# growth_settings = {
# 'cap':cap,
# 'floor':floor}
# df['cap']=cap
# df['floor']=floor
with st.expander('Holidays'):
countries = ['Country name', 'Italy', 'Spain',
'United States', 'France', 'Germany', 'Ukraine']
with st.container():
years = [2022]
selected_country = st.selectbox(
label="Select country", options=countries)
if selected_country == 'Italy':
for date, name in sorted(holidays.IT(years=years).items()):
st.write(date, name)
if selected_country == 'Spain':
for date, name in sorted(holidays.ES(years=years).items()):
st.write(date, name)
if selected_country == 'United States':
for date, name in sorted(holidays.US(years=years).items()):
st.write(date, name)
if selected_country == 'France':
for date, name in sorted(holidays.FR(years=years).items()):
st.write(date, name)
if selected_country == 'Germany':
for date, name in sorted(holidays.DE(years=years).items()):
st.write(date, name)
if selected_country == 'Ukraine':
for date, name in sorted(holidays.UKR(years=years).items()):
st.write(date, name)
else:
holidays = False
holidays = st.checkbox('Add country holidays to the model')
with st.expander('Hyperparameters'):
st.write(
'In this section it is possible to tune the scaling coefficients.')
seasonality_scale_values = [0.1, 1.0, 5.0]
changepoint_scale_values = [ 0.1, 0.5, 1.0]
st.write("The changepoint prior scale determines the flexibility of the trend, and in particular how much the trend changes at the trend changepoints.")
changepoint_scale = st.select_slider(
label='Changepoint prior scale', options=changepoint_scale_values)
st.write(
"The seasonality change point controls the flexibility of the seasonality.")
seasonality_scale = st.select_slider(
label='Seasonality prior scale', options=seasonality_scale_values)
st.markdown(
"""For more information read the [documentation](https://facebook.github.io/prophet/docs/diagnostics.html#parallelizing-cross-validation)""")
# falta el seasonality holydays scale
# y que el slider seas continuos no discretos
submitted = st.form_submit_button("Submit")
if submitted:
# if growth == 'linear':
# # growth_settings= {
# # 'cap':1,
# # 'floor':0}
# cap = 1
# floor = 1
# df['cap'] = 1
# df['floor'] = 0
# if growth == 'logistic':
# last_year_df = df.tail(365).copy()
# quantil_cap = last_year_df.y.quantile(.75)
# quantil_floor = last_year_df.y.quantile(.25)
# cap = (1 + saturation) * quantil_cap
# floor = (1 - saturation) * quantil_floor
# #st.markdown(f"Cap: {cap} \n Floor: {floor}")
# # growth_settings = {
# # 'cap':cap,
# # 'floor':floor}
# df['cap'] = cap
# df['floor'] = floor
st.markdown(f""" Model Configuration: \n
Horizon: {periods_input} days \n
Seasonality: {seasonality} \n
Trend components: {daily};{weekly};{monthly};{yearly} \n
Growth: {growth}
Holidays: {selected_country} \n
Hyperparameters: changepoints{changepoint_scale}, seasonality {seasonality_scale}
""")
st.success("Configuration submitted")
st.write(df.head())
# growth with radio button
# with st.expander("Growth model"):
# st.write('Prophet uses by default a linear growth model.')
# st.markdown("""For more information check the [documentation](https://facebook.github.io/prophet/docs/saturating_forecasts.html#forecasting-growth)""")
# growth = st.radio(label='Growth model',options=['Linear',"Logistic"])
# if growth == 'Linear':
# growth_settings= {
# 'cap':1,
# 'floor':0}
# cap=1
# floor=1
# df['cap']=1
# df['floor']=0
# if growth == 'Logistic':
# if input :
# st.write('Configure saturation')
# last_year_df = df.tail(365).copy()
# quantil_cap = last_year_df.y.quantile(.75)
# quantil_floor = last_year_df.y.quantile(.25)
# saturation = st.slider(label="+/- Growth factor (%)",
# max_value=1.0,
# min_value=0.00)
# st.write(saturation)
# cap=( 1+ saturation) * quantil_cap
# floor=( 1 - saturation) * quantil_floor
# st.markdown(f"Cap: {cap} \n Floor: {floor}")
# growth_settings = {
# 'cap':cap,
# 'floor':floor}
# df['cap']=cap
# df['floor']=floor
st.write("Below you can upload further regressors to the forecast")
with st.expander("Regressors"):
regressor_input = st.file_uploader(
'Upload time series of values that have an impact on the time series you are predicting.')
if regressor_input:
metric_df = load_csv(regressor_input)
st.write("Columns:")
st.write(list(metric_df.columns))
columns_2 = list(metric_df.columns)
col1, col2 = st.columns(2)
with col1:
date_col = st.selectbox(
"Select date column", index=0, options=columns_2, key="date_2")
with col2:
metric_col = st.selectbox(
"Select values column", index=1, options=columns_2, key="values_2")
metric_df = prep_data(metric_df)
output = 0
with st.container():
st.subheader("3. Forecast 🔮")
st.write("Fit the model on the data and generate future prediction.")
st.write("Load a time series to activate.")
if input:
# if covid:
if st.checkbox("Initialize model (Fit)", key="fit"):
# if len(growth_settings)==2:
m = Prophet(seasonality_mode=seasonality,
daily_seasonality=daily,
weekly_seasonality=weekly,
yearly_seasonality=yearly,
growth=growth,
changepoint_prior_scale=changepoint_scale,
seasonality_prior_scale=seasonality_scale,
# holidays=covid_dates
)
if holidays:
m.add_country_holidays(country_name=selected_country)
if monthly:
m.add_seasonality(
name='monthly', period=30.4375, fourier_order=5)
if regressor_input:
m.add_regressor(metric_name)
df = pd.merge(df, metric_df, how="left", on="ds")
with st.spinner('Fitting the model..'):
m = m.fit(df)
future = m.make_future_dataframe(
periods=periods_input, freq='D')
future['cap'] = cap
future['floor'] = floor
st.write(future.head())
st.write(
"The model will produce forecast up to ", future['ds'].max())
st.success('Model fitted successfully')
if regressor_input:
future = pd.merge(future, metric_df,
how="left", on="ds")
# else:
# st.warning('Invalid configuration')
# if st.checkbox("Initialize model (Fit)",key="fit"):
# #if len(growth_settings)==2:
# m = Prophet(seasonality_mode=seasonality,
# daily_seasonality=daily,
# weekly_seasonality=weekly,
# yearly_seasonality=yearly,
# growth=growth,
# changepoint_prior_scale=changepoint_scale,
# seasonality_prior_scale= seasonality_scale,
# )
# if holidays:
# m.add_country_holidays(country_name=selected_country)
# if monthly:
# m.add_seasonality(name='monthly', period=30.4375, fourier_order=5)
# with st.spinner('Fitting the model..'):
# m = Prophet(growth=_model,
# seasonality_mode=_modality,
# holidays_prior_scale=x2,
# changepoint_range=x1,
# changepoint_prior_scale=x0,
# holidays=holidays, daily_seasonality=False)
# m = m.fit(df)
# future = m.make_future_dataframe(periods=periods_input,freq='D')
# future['cap']=cap
# future['floor']=floor
# st.write("The model will produce forecast up to ", future['ds'].max())
# st.success('Model fitted successfully')
# else:
# .warning('Invalid configuration')
if st.checkbox("Generate forecast (Predict)", key="predict"):
try:
with st.spinner("Forecasting.."):
forecast = m.predict(future)
st.success('Prediction generated successfully')
st.dataframe(forecast)
fig1 = m.plot(forecast)
st.write(fig1)
output = 1
if growth == 'linear':
fig2 = m.plot(forecast)
a = add_changepoints_to_plot(
fig2.gca(), m, forecast)
st.write(fig2)
output = 1
except:
st.warning("You need to train the model first.. ")
if output == 1:
if st.checkbox('Show components'):
try:
with st.spinner("Loading.."):
fig3 = m.plot_components(forecast)
st.write(fig3)
except:
st.warning("Requires forecast generation")
if input:
if output == 1:
# with st.expander('Download forecast'):
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
csv = convert_df( pd.DataFrame(
forecast[['ds', 'yhat_lower', 'yhat', 'yhat_upper']]))
st.download_button(label="Download data as CSV",
data=csv,
file_name='forecast.csv',
mime='text/csv')
# if st.button('Export forecast (.csv)'):
# with st.spinner("Exporting.."):
# export_forecast = pd.DataFrame(
# forecast[['ds', 'yhat_lower', 'yhat', 'yhat_upper']]).to_csv()
# b64 = base64.b64encode(
# export_forecast.encode()).decode()
# href = f'<a href="data:file/csv;base64,{b64}">Download CSV File</a> (right click > save as **forecast.csv**)'
# st.markdown(href, unsafe_allow_html=True)
st.subheader('4. Model validation 🧪')
st.write(
"In this section it is possible to do cross-validation of the model.")
with st.expander("Cross validation"):
st.markdown("""The Prophet library makes it possible to divide our historical data into training data and testing data for cross validation. The main concepts for cross validation with Prophet are:""")
st.write(
"Training data (initial): The amount of data set aside for training. The parameter is in the API called initial.")
st.write("Horizon: The data set aside for validation.")
st.write(
"Cutoff (period): a forecast is made for every observed point between cutoff and cutoff + horizon.""")
# with st.expander("Cross validation"):
# initial = st.number_input(
# value=365, label="initial", min_value=30, max_value=1096)
# initial = str(initial) + " days"
# period = st.number_input(
# value=90, label="period", min_value=1, max_value=365)
# period = str(period) + " days"
# horizon = st.number_input(
# value=90, label="horizon", min_value=30, max_value=366)
# horizon = str(horizon) + " days"
initial = st.number_input(value= 120,label="initial",min_value=30,max_value=1096)
initial = str(initial) + " days"
period = st.number_input(value= 60,label="period",min_value=1,max_value=365)
period = str(period) + " days"
horizon = st.number_input(value= 90, label="horizon",min_value=30,max_value=366)
horizon = str(horizon) + " days"
st.write(f"Here we do cross-validation to assess prediction performance on a horizon of **{horizon}** , starting with **{initial}** of training data in the first cutoff and then making predictions every **{period}**.")
st.markdown("""For more information read the [documentation](https://facebook.github.io/prophet/docs/diagnostics.html#parallelizing-cross-validation)""")
# with st.expander("Metrics"):
if input:
if output == 1:
if st.checkbox('Calculate metrics'):
with st.spinner("Cross validating.."):
try:
df_cv = cross_validation(m, initial=initial,
period=period,
horizon=horizon,
parallel="processes")
df_p = performance_metrics(df_cv)
st.write(df_p)
metrics = 1
if metrics == 1:
st.markdown('**Metrics definition**')
st.write("Mse: mean absolute error")
st.write("Mae: Mean average error")
st.write("Mape: Mean average percentage error")
st.write("Mse: mean absolute error")
st.write("Mdape: Median average percentage error")
metrics = ['Choose a metric', 'mse', 'rmse',
'mae', 'mape', 'mdape', 'coverage']
selected_metric = st.selectbox(
"Select metric to plot", options=metrics)
if selected_metric != metrics[0]:
fig4 = plot_cross_validation_metric(
df_cv, metric=selected_metric)
st.write(fig4)
except:
st.write("Invalid configuration, try other periods")
else:
st.write("Create a forecast to see metrics")
st.subheader('5. Hyperparameter Tuning 🧲')
st.write(
"In this section it is possible to find the best combination of hyperparamenters.")
st.markdown(
"""For more informations visit the [documentation](https://facebook.github.io/prophet/docs/diagnostics.html#hyperparameter-tuning)""")
param_grid = {
'changepoint_prior_scale': [0.1, 1.0, 5.0],
'seasonality_prior_scale': [ 0.1, 0.5, 1.0],
}
# Generate all combinations of parameters
all_params = [dict(zip(param_grid.keys(), v))
for v in itertools.product(*param_grid.values())]
rmses = [] # Store the RMSEs for each params here
if input:
if output == 1:
if st.button("Optimize hyperparameters"):
with st.spinner("Finding best combination. Please wait.."):
try:
# Use cross validation to evaluate all parameters
for params in all_params:
# Fit model with given params
m = Prophet(**params).fit(df)
df_cv = cross_validation(m, initial=initial,
period=period,
horizon=horizon,
parallel="processes")
df_p = performance_metrics(
df_cv, rolling_window=1)
rmses.append(df_p['rmse'].values[0])
except:
for params in all_params:
# Fit model with given params
m = Prophet(**params).fit(df)
df_cv = cross_validation(m, initial=initial,
period=period,
horizon=horizon,
parallel="threads")
df_p = performance_metrics(
df_cv, rolling_window=1)
rmses.append(df_p['rmse'].values[0])
# Find the best parameters
tuning_results = pd.DataFrame(all_params)
tuning_results['rmse'] = rmses
st.write(tuning_results)
best_params = all_params[np.argmin(rmses)]
st.write('The best parameter combination is:')
st.write(best_params)
#st.write(f"Changepoint prior scale: {best_params[0]} ")
#st.write(f"Seasonality prior scale: {best_params[1]} ")
st.write(
" You may repeat the process using these parameters in the configuration section 2")
else:
st.write("Create a model to optimize")
st.subheader('6. Export results ✨')
st.write(
"Finally you can export your result forecast, model configuration and evaluation metrics.")
if input:
if output == 1:
col1, col2, col3 = st.columns(3)
with col1:
st.download_button(label="Download forecast",
data=csv,
file_name='Forecast.csv',
mime='text/csv')
# if st.button('Export Forecast (.csv)'):
# with st.spinner("Exporting.."):
# export_forecast = pd.DataFrame(
# forecast[['ds', 'yhat_lower', 'yhat', 'yhat_upper']]).to_csv()
# b64 = base64.b64encode(
# export_forecast.encode()).decode()
# href = f'<a href="data:file/csv;base64,{b64}">Download CSV File</a> (right click > save as **forecast.csv**)'
# st.markdown(href, unsafe_allow_html=True)
with col2:
if st.button("Export model metrics (.csv)"):
try:
df_p = df_p.to_csv(decimal=',')
b64 = base64.b64encode(df_p.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}">Download CSV File</a> (click derecho > guardar como **metrics.csv**)'
st.markdown(href, unsafe_allow_html=True)
except:
st.write("No metrics to export")
with col3:
if st.button('Export Model Configuration (.json)'):
with st.spinner("Exporting.."):
with open('serialized_model.json', 'w') as fout:
json.dump(model_to_json(m), fout)
else:
st.write("Generate a forecast to download.")
if page == "About":
st.image("prophet.png")
st.header("About")
st.markdown(
"Official documentation of **[Facebook Prophet](https://facebook.github.io/prophet/)**")
st.markdown(
"Official documentation of **[Streamlit](https://docs.streamlit.io/en/stable/getting_started.html)**")
st.write("")
st.write("Author:")
st.markdown(
""" **[Giancarlo Di Donato](https://www.linkedin.com/in/giancarlodidonato/)**""")
st.markdown(
"""**[Source code](https://github.com/giandata/forecast-app)**""")
st.write("Created on 27/02/2021")
st.write("Last updated: **17/02/2022**")