forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sympy_utils.py
617 lines (521 loc) · 21.3 KB
/
test_sympy_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# Owner(s): ["oncall: pt2"]
import itertools
import sys
import sympy
from typing import Callable, List, Tuple, Type
from torch.testing._internal.common_device_type import skipIf
from torch.testing._internal.common_utils import (
TEST_Z3,
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
from torch.utils._sympy.functions import FloorDiv
from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve
from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges
from torch.utils._sympy.reference import ReferenceAnalysis
from torch.utils._sympy.interp import sympy_interp
from torch.utils._sympy.singleton_int import SingletonInt
from sympy.core.relational import is_ge, is_le, is_gt, is_lt
import functools
UNARY_OPS = [
"reciprocal",
"square",
"abs",
"neg",
"exp",
"log",
"sqrt",
"floor",
"ceil",
]
BINARY_OPS = ["truediv", "div", "floordiv", "truncdiv", "add", "mul", "sub", "pow", "minimum", "maximum", "mod"]
UNARY_BOOL_OPS = ["not_"]
BINARY_BOOL_OPS = ["or_", "and_"]
COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"]
# a mix of constants, powers of two, primes
CONSTANTS = [
-1,
0,
1,
2,
3,
4,
5,
8,
16,
32,
64,
100,
101,
2**24,
2**32,
2**37 - 1,
sys.maxsize - 1,
sys.maxsize,
]
# less constants for N^2 situations
LESS_CONSTANTS = [-1, 0, 1, 2, 100]
# SymPy relational types.
RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le]
def valid_unary(fn, v):
if fn == "log" and v <= 0:
return False
elif fn == "reciprocal" and v == 0:
return False
elif fn == "sqrt" and v < 0:
return False
return True
def valid_binary(fn, a, b):
if fn == "pow" and (
b > 4
or ( # sympy will expand to x*x*... for integral b; don't do it if it's big
a <= 0 and b == -1
)
or (a == b == 0) # no imaginary numbers # 0**0 is undefined
):
return False
elif fn == "mod" and b == 0:
return False
elif (fn == "div" or fn == "truediv") and b == 0:
return False
return True
def generate_range(vals):
for a1, a2 in itertools.product(vals, repeat=2):
if a1 in [sympy.true, sympy.false]:
if a1 == sympy.true and a2 == sympy.false:
continue
else:
if a1 > a2:
continue
# ranges that only admit infinite values are not interesting
if a1 == sympy.oo or a2 == -sympy.oo:
continue
yield ValueRanges(a1, a2)
class TestValueRanges(TestCase):
@parametrize("fn", UNARY_OPS)
@parametrize("dtype", ("int", "float"))
def test_unary_ref(self, fn, dtype):
dtype = {"int": sympy.Integer, "float": sympy.Float}[dtype]
for v in CONSTANTS:
if not valid_unary(fn, v):
continue
with self.subTest(v=v):
v = dtype(v)
ref_r = getattr(ReferenceAnalysis, fn)(v)
r = getattr(ValueRangeAnalysis, fn)(v)
self.assertEqual(r.lower.is_integer, r.upper.is_integer)
self.assertEqual(r.lower, r.upper)
self.assertEqual(ref_r.is_integer, r.upper.is_integer)
self.assertEqual(ref_r, r.lower)
def test_pow_half(self):
ValueRangeAnalysis.pow(ValueRanges.unknown(), ValueRanges.wrap(0.5))
@parametrize("fn", BINARY_OPS)
@parametrize("dtype_a", ("int", "float"))
@parametrize("dtype_b", ("int", "float"))
def test_binary_ref(self, fn, dtype_a, dtype_b):
to_dtype = {"int": sympy.Integer, "float": sympy.Float}
dtype_a = to_dtype[dtype_a]
dtype_b = to_dtype[dtype_b]
for a, b in itertools.product(CONSTANTS, repeat=2):
if not valid_binary(fn, a, b):
continue
a = dtype_a(a)
b = dtype_b(b)
with self.subTest(a=a, b=b):
r = getattr(ValueRangeAnalysis, fn)(a, b)
if r == ValueRanges.unknown():
continue
ref_r = getattr(ReferenceAnalysis, fn)(a, b)
# sympy.floordiv does 1.0 // 1.0 == 1 rather than 1.0. wtf
if fn != "floordiv":
self.assertEqual(r.lower.is_integer, r.upper.is_integer)
self.assertEqual(ref_r.is_integer, r.upper.is_integer)
self.assertEqual(r.lower, r.upper)
self.assertEqual(ref_r, r.lower)
def test_mul_zero_unknown(self):
self.assertEqual(
ValueRangeAnalysis.mul(ValueRanges.wrap(0), ValueRanges.unknown()),
ValueRanges.wrap(0),
)
@parametrize("fn", UNARY_BOOL_OPS)
def test_unary_bool_ref_range(self, fn):
vals = [sympy.false, sympy.true]
for a in generate_range(vals):
with self.subTest(a=a):
ref_r = getattr(ValueRangeAnalysis, fn)(a)
unique = set()
for a0 in vals:
if a0 not in a:
continue
with self.subTest(a0=a0):
r = getattr(ReferenceAnalysis, fn)(a0)
self.assertIn(r, ref_r)
unique.add(r)
if ref_r.lower == ref_r.upper:
self.assertEqual(len(unique), 1)
else:
self.assertEqual(len(unique), 2)
@parametrize("fn", BINARY_BOOL_OPS)
def test_binary_bool_ref_range(self, fn):
vals = [sympy.false, sympy.true]
for a, b in itertools.product(generate_range(vals), repeat=2):
with self.subTest(a=a, b=b):
ref_r = getattr(ValueRangeAnalysis, fn)(a, b)
unique = set()
for a0, b0 in itertools.product(vals, repeat=2):
if a0 not in a or b0 not in b:
continue
with self.subTest(a0=a0, b0=b0):
r = getattr(ReferenceAnalysis, fn)(a0, b0)
self.assertIn(r, ref_r)
unique.add(r)
if ref_r.lower == ref_r.upper:
self.assertEqual(len(unique), 1)
else:
self.assertEqual(len(unique), 2)
@parametrize("fn", UNARY_OPS)
def test_unary_ref_range(self, fn):
vals = [-sympy.oo, *CONSTANTS, sympy.oo]
for a in generate_range(vals):
with self.subTest(a=a):
ref_r = getattr(ValueRangeAnalysis, fn)(a)
for a0 in CONSTANTS:
if a0 not in a:
continue
if not valid_unary(fn, a0):
continue
with self.subTest(a0=a0):
r = getattr(ReferenceAnalysis, fn)(sympy.Integer(a0))
self.assertIn(r, ref_r)
# This takes about 4s for all the variants
@parametrize("fn", BINARY_OPS + COMPARE_OPS)
def test_binary_ref_range(self, fn):
vals = [-sympy.oo, *LESS_CONSTANTS, sympy.oo]
for a, b in itertools.product(generate_range(vals), repeat=2):
# don't attempt pow on exponents that are too large (but oo is OK)
if fn == "pow" and b.upper > 4 and b.upper != sympy.oo:
continue
with self.subTest(a=a, b=b):
ref_r = getattr(ValueRangeAnalysis, fn)(a, b)
for a0, b0 in itertools.product(LESS_CONSTANTS, repeat=2):
if a0 not in a or b0 not in b:
continue
if not valid_binary(fn, a0, b0):
continue
with self.subTest(a0=a0, b0=b0):
r = getattr(ReferenceAnalysis, fn)(
sympy.Integer(a0), sympy.Integer(b0)
)
if r.is_finite:
self.assertIn(r, ref_r)
def test_rational_bounds(self):
# Repro from https://github.com/pytorch/pytorch/issues/105097
from sympy import floor, Eq
shape_0 = sympy.Symbol('shape_0', positive=True, integer=True)
new_expr = (
Eq(30 * floor(4 * ((shape_0 + 1) // 96) *
((shape_0 + 62017) // (((shape_0 + 1) // 96) + 646)) / 647 +
2584 * ((shape_0 + 62017) // (((shape_0 + 1) // 96) + 646)) / 647),
2880 * floor(((shape_0 + 1) // 96) *
((shape_0 + 62017) // (((shape_0 + 1) // 96) + 646)) / 15528 +
323 * ((shape_0 + 62017) // (((shape_0 + 1) // 96) + 646)) / 7764)))
new_range_env = {shape_0: ValueRanges(lower=1, upper=190)}
self.assertTrue(new_expr.subs({shape_0: 95}))
self.assertIn(True, sympy_interp(ValueRangeAnalysis, new_range_env, new_expr))
class TestSympyInterp(TestCase):
@parametrize("fn", UNARY_OPS + BINARY_OPS + UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS)
def test_interp(self, fn):
# SymPy does not implement truncation for Expressions
if fn in ("div", "truncdiv", "minimum", "maximum"):
return
from sympy.abc import x, y
vals = CONSTANTS
if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}:
vals = [True, False]
arity = 1
if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}:
arity = 2
symbols = [x]
if arity == 2:
symbols = [x, y]
for args in itertools.product(vals, repeat=arity):
if arity == 1 and not valid_unary(fn, *args):
continue
elif arity == 2 and not valid_binary(fn, *args):
continue
with self.subTest(args=args):
sargs = [sympy.sympify(a) for a in args]
sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols)
ref_r = getattr(ReferenceAnalysis, fn)(*sargs)
# Yes, I know this is a longwinded way of saying xreplace; the
# point is to test sympy_interp
r = sympy_interp(ReferenceAnalysis, dict(zip(symbols, sargs)), sympy_expr)
self.assertEqual(ref_r, r)
def type_name_fn(type: Type) -> str:
return type.__name__
def parametrize_relational_types(*types):
def wrapper(f: Callable):
return parametrize("op", types or RELATIONAL_TYPES, name_fn=type_name_fn)(f)
return wrapper
class TestSympySolve(TestCase):
def _create_integer_symbols(self) -> List[sympy.Symbol]:
return sympy.symbols("a b c", integer=True)
def test_give_up(self):
from sympy import Eq, Ne
a, b, c = self._create_integer_symbols()
cases = [
# Not a relational operation.
a + b,
# 'a' appears on both sides.
Eq(a, a + 1),
# 'a' doesn't appear on neither side.
Eq(b, c + 1),
# Result is a 'sympy.And'.
Eq(FloorDiv(a, b), c),
# Result is a 'sympy.Or'.
Ne(FloorDiv(a, b), c),
]
for case in cases:
e = try_solve(case, a)
self.assertEqual(e, None)
@parametrize_relational_types()
def test_noop(self, op):
a, b, _ = self._create_integer_symbols()
lhs, rhs = a, 42 * b
expr = op(lhs, rhs)
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, r_rhs = r
self.assertEqual(r_expr, expr)
self.assertEqual(r_rhs, rhs)
@parametrize_relational_types()
def test_noop_rhs(self, op):
a, b, _ = self._create_integer_symbols()
lhs, rhs = 42 * b, a
mirror = mirror_rel_op(op)
self.assertNotEqual(mirror, None)
expr = op(lhs, rhs)
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, r_rhs = r
self.assertEqual(r_expr, mirror(rhs, lhs))
self.assertEqual(r_rhs, lhs)
def _test_cases(self, cases: List[Tuple[sympy.Basic, sympy.Basic]], thing: sympy.Basic, op: Type[sympy.Rel], **kwargs):
for source, expected in cases:
r = try_solve(source, thing, **kwargs)
self.assertTrue(
(r is None and expected is None)
or (r is not None and expected is not None)
)
if r is not None:
r_expr, r_rhs = r
self.assertEqual(r_rhs, expected)
self.assertEqual(r_expr, op(thing, expected))
def test_addition(self):
from sympy import Eq
a, b, c = self._create_integer_symbols()
cases = [
(Eq(a + b, 0), -b),
(Eq(a + 5, b - 5), b - 10),
(Eq(a + c * b, 1), 1 - c * b),
]
self._test_cases(cases, a, Eq)
@parametrize_relational_types(sympy.Eq, sympy.Ne)
def test_multiplication_division(self, op):
a, b, c = self._create_integer_symbols()
cases = [
(op(a * b, 1), 1 / b),
(op(a * 5, b - 5), (b - 5) / 5),
(op(a * b, c), c / b),
]
self._test_cases(cases, a, op)
@parametrize_relational_types(*INEQUALITY_TYPES)
def test_multiplication_division_inequality(self, op):
a, b, _ = self._create_integer_symbols()
intneg = sympy.Symbol("neg", integer=True, negative=True)
intpos = sympy.Symbol("pos", integer=True, positive=True)
cases = [
# Divide/multiply both sides by positive number.
(op(a * intpos, 1), 1 / intpos),
(op(a / (5 * intpos), 1), 5 * intpos),
(op(a * 5, b - 5), (b - 5) / 5),
# 'b' is not strictly positive nor negative, so we can't
# divide/multiply both sides by 'b'.
(op(a * b, 1), None),
(op(a / b, 1), None),
(op(a * b * intpos, 1), None),
]
mirror_cases = [
# Divide/multiply both sides by negative number.
(op(a * intneg, 1), 1 / intneg),
(op(a / (5 * intneg), 1), 5 * intneg),
(op(a * -5, b - 5), -(b - 5) / 5),
]
mirror_op = mirror_rel_op(op)
assert mirror_op is not None
self._test_cases(cases, a, op)
self._test_cases(mirror_cases, a, mirror_op)
@parametrize_relational_types()
def test_floordiv(self, op):
from sympy import Eq, Ne, Gt, Ge, Lt, Le
a, b, c = sympy.symbols("a b c")
pos = sympy.Symbol("pos", positive=True)
integer = sympy.Symbol("integer", integer=True)
# (Eq(FloorDiv(a, pos), integer), And(Ge(a, integer * pos), Lt(a, (integer + 1) * pos))),
# (Eq(FloorDiv(a + 5, pos), integer), And(Ge(a, integer * pos), Lt(a, (integer + 1) * pos))),
# (Ne(FloorDiv(a, pos), integer), Or(Lt(a, integer * pos), Ge(a, (integer + 1) * pos))),
special_case = {
# 'FloorDiv' turns into 'And', which can't be simplified any further.
Eq: (Eq(FloorDiv(a, pos), integer), None),
# 'FloorDiv' turns into 'Or', which can't be simplified any further.
Ne: (Ne(FloorDiv(a, pos), integer), None),
Gt: (Gt(FloorDiv(a, pos), integer), (integer + 1) * pos),
Ge: (Ge(FloorDiv(a, pos), integer), integer * pos),
Lt: (Lt(FloorDiv(a, pos), integer), integer * pos),
Le: (Le(FloorDiv(a, pos), integer), (integer + 1) * pos),
}[op]
cases: List[Tuple[sympy.Basic, sympy.Basic]] = [
# 'b' is not strictly positive
(op(FloorDiv(a, b), integer), None),
# 'c' is not strictly positive
(op(FloorDiv(a, pos), c), None),
]
# The result might change after 'FloorDiv' transformation.
# Specifically:
# - [Ge, Gt] => Ge
# - [Le, Lt] => Lt
if op in (sympy.Gt, sympy.Ge):
r_op = sympy.Ge
elif op in (sympy.Lt, sympy.Le):
r_op = sympy.Lt
else:
r_op = op
self._test_cases([special_case, *cases], a, r_op)
self._test_cases([(special_case[0], None), *cases], a, r_op, floordiv_inequality=False)
def test_floordiv_eq_simplify(self):
from sympy import Eq, Lt, Le
a = sympy.Symbol("a", positive=True, integer=True)
def check(expr, expected):
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, _ = r
self.assertEqual(r_expr, expected)
# (a + 10) // 3 == 3
# =====================================
# 3 * 3 <= a + 10 (always true)
# a + 10 < 4 * 3 (not sure)
check(Eq(FloorDiv(a + 10, 3), 3), Lt(a, (3 + 1) * 3 - 10))
# (a + 10) // 2 == 4
# =====================================
# 4 * 2 <= 10 - a (not sure)
# 10 - a < 5 * 2 (always true)
check(Eq(FloorDiv(10 - a, 2), 4), Le(a, -(4 * 2 - 10)))
@skipIf(not TEST_Z3, "Z3 not installed")
def test_z3_proof_floordiv_eq_simplify(self):
import z3
from sympy import Eq, Lt
a = sympy.Symbol("a", positive=True, integer=True)
a_ = z3.Int("a")
# (a + 10) // 3 == 3
# =====================================
# 3 * 3 <= a + 10 (always true)
# a + 10 < 4 * 3 (not sure)
solver = z3.SolverFor("QF_NRA")
# Add assertions for 'a_'.
solver.add(a_ > 0)
expr = Eq(FloorDiv(a + 10, 3), 3)
r_expr, _ = try_solve(expr, a)
# Check 'try_solve' really returns the 'expected' below.
expected = Lt(a, (3 + 1) * 3 - 10)
self.assertEqual(r_expr, expected)
# Check whether there is an integer 'a_' such that the
# equation below is satisfied.
solver.add(
# expr
(z3.ToInt((a_ + 10) / 3.0) == 3)
!=
# expected
(a_ < (3 + 1) * 3 - 10)
)
# Assert that there's no such an integer.
# i.e. the transformation is sound.
r = solver.check()
self.assertEqual(r, z3.unsat)
class TestSingletonInt(TestCase):
def test_basic(self):
j1 = SingletonInt(1, coeff=1)
j1_copy = SingletonInt(1, coeff=1)
j2 = SingletonInt(2, coeff=1)
j1x2 = SingletonInt(1, coeff=2)
def test_eq(a, b, expected):
self.assertEqual(sympy.Eq(a, b), expected)
self.assertEqual(sympy.Ne(b, a), not expected)
# eq, ne
test_eq(j1, j1, True)
test_eq(j1, j1_copy, True)
test_eq(j1, j2, False)
test_eq(j1, j1x2, False)
test_eq(j1, sympy.Integer(1), False)
test_eq(j1, sympy.Integer(3), False)
def test_ineq(a, b, expected, *, strict=True):
greater = (sympy.Gt, is_gt) if strict else (sympy.Ge, is_ge)
less = (sympy.Lt, is_lt) if strict else (sympy.Le, is_le)
if isinstance(expected, bool):
# expected is always True
for fn in greater:
self.assertEqual(fn(a, b), expected)
self.assertEqual(fn(b, a), not expected)
for fn in less:
self.assertEqual(fn(b, a), expected)
self.assertEqual(fn(a, b), not expected)
else:
for fn in greater:
with self.assertRaisesRegex(ValueError, expected):
fn(a, b)
for fn in less:
with self.assertRaisesRegex(ValueError, expected):
fn(b, a)
# ge, le, gt, lt
for strict in (True, False):
_test_ineq = functools.partial(test_ineq, strict=strict)
_test_ineq(j1, sympy.Integer(0), True)
_test_ineq(j1, sympy.Integer(3), "indeterminate")
_test_ineq(j1, j2, "indeterminate")
_test_ineq(j1x2, j1, True)
# Special cases for ge, le, gt, lt:
for ge in (sympy.Ge, is_ge):
self.assertTrue(ge(j1, j1))
self.assertTrue(ge(j1, sympy.Integer(2)))
with self.assertRaisesRegex(ValueError, "indeterminate"):
ge(sympy.Integer(2), j1)
for le in (sympy.Le, is_le):
self.assertTrue(le(j1, j1))
self.assertTrue(le(sympy.Integer(2), j1))
with self.assertRaisesRegex(ValueError, "indeterminate"):
le(j1, sympy.Integer(2))
for gt in (sympy.Gt, is_gt):
self.assertFalse(gt(j1, j1))
self.assertFalse(gt(sympy.Integer(2), j1))
# it is only known to be that j1 >= 2, j1 > 2 is indeterminate
with self.assertRaisesRegex(ValueError, "indeterminate"):
gt(j1, sympy.Integer(2))
for lt in (sympy.Lt, is_lt):
self.assertFalse(lt(j1, j1))
self.assertFalse(lt(j1, sympy.Integer(2)))
with self.assertRaisesRegex(ValueError, "indeterminate"):
lt(sympy.Integer(2), j1)
# mul
self.assertEqual(j1 * 2, j1x2)
# Unfortunately, this doesn't not automatically simplify to 2*j1
# since sympy.Mul doesn't trigger __mul__ unlike the above.
self.assertIsInstance(sympy.Mul(j1, 2), sympy.core.mul.Mul)
with self.assertRaisesRegex(ValueError, "cannot be multiplied"):
j1 * j2
self.assertEqual(j1.free_symbols, set())
instantiate_parametrized_tests(TestValueRanges)
instantiate_parametrized_tests(TestSympyInterp)
instantiate_parametrized_tests(TestSympySolve)
if __name__ == "__main__":
run_tests()