forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_matmul_cuda.py
445 lines (403 loc) · 19.8 KB
/
test_matmul_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Owner(s): ["module: linear algebra"]
import unittest
from itertools import product
from functools import partial
from typing import Optional
import torch
from torch.quantization._quantized_conversions import (
pack_int4_to_int8,
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass,
)
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import SM53OrLater, _get_torch_cuda_version
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
tol as xtol,
toleranceOverride,
)
from torch.testing._internal.common_utils import (
IS_ARM64,
IS_JETSON,
IS_WINDOWS,
parametrize,
run_tests,
skipIfRocmVersionLessThan,
TEST_WITH_ROCM,
TestCase,
)
_IS_SM8X = False
if torch.cuda.is_available():
_IS_SM8X = torch.cuda.get_device_capability(0)[0] == 8
# Protects against includes accidentally setting the default dtype
assert torch.get_default_dtype() is torch.float32
@unittest.skipIf(IS_ARM64, "Issue with numpy version on arm")
class TestMatmulCuda(TestCase):
def setUp(self):
super(self.__class__, self).setUp()
torch.backends.cuda.matmul.allow_tf32 = False
def tearDown(self):
torch.backends.cuda.matmul.allow_tf32 = True
super(self.__class__, self).tearDown()
def cublas_addmm(self, size: int, dtype: torch.dtype, reduced_precision: bool = False):
#
# Check for catastrophic cuBLAS inaccuracy by measuring the deviation between
# results from the CUDA invocation of torch.addmm and the CPU invocation
# (which does not use CUDA backend).
#
# Get dims
n, m, p = (size + 1, size, size + 2)
# Disable reduced precision reductions in BFloat16 to bypass some kernels
# which fail the threshold check
orig_bf16 = torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction
orig_fp16 = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = reduced_precision
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = reduced_precision
# Make random tensors on CPU (seed set on common_utils.py import)
# (Not using numpy because it does not support bfloat16)
make_arg = partial(make_tensor, dtype=dtype, device="cpu")
m_beta = make_arg(1)
m_input = make_arg((n, p))
m_1 = make_arg((n, m))
m_2 = make_arg((m, p))
# *(B)FLOAT16 Special Handling*
# Backend does not tensorize float16 on CPU,
# and bloat16 may present accuracy issues,
# so convert to float32 for these cases
# (but keep same for other types, e.g. float32 and int*)
if dtype == torch.float16 or dtype == torch.bfloat16:
m_beta = m_beta.to(dtype=torch.float32)
m_input = m_input.to(dtype=torch.float32)
m_1 = m_1.to(dtype=torch.float32)
m_2 = m_2.to(dtype=torch.float32)
# Get CPU result
res_cpu = torch.addmm(m_input, m_1, m_2, beta=m_beta.item())
# *(B)FLOAT16 Special Handling*``
# Convert back to (b)float16
if dtype == torch.float16 or dtype == torch.bfloat16:
m_beta = m_beta.to(dtype=dtype)
m_input = m_input.to(dtype=dtype)
m_1 = m_1.to(dtype=dtype)
m_2 = m_2.to(dtype=dtype)
res_cpu = res_cpu.to(dtype=dtype)
# Move arg tensors to CUDA
m_beta = m_beta.to("cuda")
m_input = m_input.to("cuda")
m_1 = m_1.to("cuda")
m_2 = m_2.to("cuda")
# Get CUDA result
res_cuda = torch.addmm(m_input, m_1, m_2, beta=m_beta.item())
# Move to CPU for comparison
res_cuda = res_cuda.to("cpu")
# Compare
self.assertEqual(res_cpu, res_cuda)
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = orig_bf16
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig_fp16
@onlyCUDA
@skipIfRocmVersionLessThan((5, 2))
# imported 'tol' as 'xtol' to avoid aliasing in code above
@toleranceOverride({torch.float16: xtol(atol=1e-1, rtol=1e-1),
torch.bfloat16: xtol(atol=1e-1, rtol=1e-1),
torch.float32: xtol(atol=1e-1, rtol=1e-1)})
@dtypes(torch.float16, torch.bfloat16, torch.float32)
@parametrize("size", [100, 1000, 10000])
def test_cublas_addmm(self, size: int, dtype: torch.dtype):
self.cublas_addmm(size, dtype, False)
@onlyCUDA
@skipIfRocmVersionLessThan((5, 2))
# imported 'tol' as 'xtol' to avoid aliasing in code above
@toleranceOverride({torch.float16: xtol(atol=7e-1, rtol=2e-1),
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
@dtypes(torch.float16, torch.bfloat16)
@parametrize("size", [100, 1000, 10000])
def test_cublas_addmm_reduced_precision(self, size: int, dtype: torch.dtype):
self.cublas_addmm(size, dtype, True)
@onlyCUDA
@toleranceOverride({torch.float16: xtol(atol=1e-3, rtol=2e-3)})
@dtypes(torch.float16)
def test_cublas_addmm_alignment(self, dtype):
device = 'cuda'
# perturb X, A, or B alignment
for idx in range(0, 3):
for offset in range(1, 3):
offsets = [0, 0, 0]
offsets[idx] = offset
x_offset, a_offset, b_offset = offsets
A = torch.rand((5120 * 2560 + a_offset), requires_grad=True, dtype=dtype, device=device)
A = A[a_offset:].reshape(5120, 2560)
X = torch.rand((26 * 2560 + x_offset), requires_grad=True, dtype=dtype, device=device)
X = X[x_offset:].reshape(26, 1, 2560)
B = torch.rand((5120 + b_offset), requires_grad=True, dtype=dtype, device=device)
B = B[b_offset:].reshape(5120)
out = torch.nn.functional.linear(X, A, B)
self.assertEqual(out, torch.matmul(X, A.transpose(1, 0)) + B)
@onlyCUDA
@unittest.skipIf(IS_JETSON, "Too large for Jetson")
@toleranceOverride({torch.float32: xtol(atol=1e-5, rtol=1e-5)})
@dtypes(*([torch.float32, torch.float16] +
[torch.bfloat16] if TEST_WITH_ROCM or SM53OrLater else []))
@parametrize(
"batch_size, N, M, P",
[(2, 100, 100, 100),
(2, 1000, 1000, 1000),
(1, 10000, 1000, 10000),
(1, 10000, 10000, 10000)],
name_fn=lambda batch_size, N, M, P: f"{batch_size}_{N}_{M}_{P}",
)
def test_cublas_baddbmm_large_input(self, device, batch_size, N, M, P, dtype):
cpu_dtype = dtype
if dtype == torch.float16 or dtype == torch.bfloat16:
cpu_dtype = torch.float32
M1 = torch.rand((N, M), device=device, dtype=dtype)
M2 = torch.rand((M, P), device=device, dtype=dtype)
A = torch.rand((N, P), device=device, dtype=dtype)
def _convert_to_cpu(t):
return t.to(device='cpu', dtype=cpu_dtype)
M1_cpu, M2_cpu, A_cpu = map(_convert_to_cpu, [M1, M2, A])
# linear
out1_cpu = torch.nn.functional.linear(M1_cpu, M2_cpu.t(), A_cpu).to(dtype=dtype)
out1_gpu = torch.nn.functional.linear(M1, M2.t(), A).cpu()
self.assertEqual(out1_cpu, out1_gpu)
# test multiply the identity matrix
if N == M and M == P:
M2_eye = torch.eye(N, device=device, dtype=dtype)
out1_eye_gpu = torch.nn.functional.linear(M1, M2_eye.t(), torch.zeros_like(A))
self.assertEqual(M1_cpu.to(dtype=dtype), out1_eye_gpu.cpu())
# baddbmm
def _expand_to_batch(t: torch.Tensor):
return t.expand((batch_size, ) + t.size())
alpha, beta = 1.0, 1.0
M1, M2, A, M1_cpu, M2_cpu, A_cpu = map(_expand_to_batch, [M1, M2, A, M1_cpu, M2_cpu, A_cpu])
out2_cpu = torch.baddbmm(A_cpu, M1_cpu, M2_cpu, beta=beta, alpha=alpha).to(dtype=dtype)
out2_gpu = torch.baddbmm(A, M1, M2, beta=beta, alpha=alpha).cpu()
self.assertEqual(out2_cpu, out2_gpu)
# test multiply the identity matrix
if N == M and M == P:
M2_eye = torch.eye(N, device=device, dtype=dtype).expand(batch_size, N, N)
out2_eye_gpu = torch.baddbmm(torch.zeros_like(A), M1, M2_eye, beta=beta, alpha=alpha)
self.assertEqual(M1_cpu.to(dtype=dtype), out2_eye_gpu.cpu())
# cross comparison
self.assertEqual(out1_gpu, out2_gpu[0])
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
class TestFP8MatmulCuda(TestCase):
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
def _test_tautological_mm(self, device: str = "cuda",
x_dtype: torch.dtype = torch.float8_e4m3fn,
y_dtype: torch.dtype = torch.float8_e4m3fn,
out_dtype: Optional[torch.dtype] = None,
size: int = 16) -> None:
x_fp8 = torch.rand(size, size, device=device).to(x_dtype)
y_fp8 = torch.eye(size, device=device, dtype=y_dtype).t()
out_fp32 = torch.mm(x_fp8.to(torch.float), y_fp8.to(torch.float))
(out_fp8, amax_fp8) = torch._scaled_mm(x_fp8, y_fp8, out_dtype=out_dtype)
if out_dtype is not None:
self.assertEqual(out_dtype, out_fp8.dtype)
if out_dtype not in [torch.float16, torch.bfloat16, torch.float]:
self.assertEqual(out_fp32.amax(), amax_fp8)
self.assertEqual(out_fp32, out_fp8.to(torch.float))
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
def test_float8_basics(self, device) -> None:
self._test_tautological_mm(device, torch.float8_e4m3fn, torch.float8_e4m3fn, size=16)
self._test_tautological_mm(device, torch.float8_e4m3fn, torch.float8_e5m2, size=32)
self._test_tautological_mm(device, torch.float8_e5m2, torch.float8_e4m3fn, size=48)
# According to https://docs.nvidia.com/cuda/cublas/#id99 8F_E5M2 MM is unsupported
with self.assertRaises(RuntimeError):
self._test_tautological_mm(device, torch.float8_e5m2, torch.float8_e5m2)
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
def test_float8_out_dtype(self, device) -> None:
self._test_tautological_mm(device, size=64, out_dtype=torch.float16)
self._test_tautological_mm(device, size=96, out_dtype=torch.float32)
self._test_tautological_mm(device, size=80, out_dtype=torch.bfloat16)
with self.assertRaises(RuntimeError):
self._test_tautological_mm(device, out_dtype=torch.float8_e5m2)
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
def test_float8_scale(self, device) -> None:
size = (16, 16)
x = torch.full(size, .5, device=device, dtype=torch.float8_e4m3fn)
y = torch.full(size, .5, device=device, dtype=torch.float8_e5m2).t()
scale_a = torch.tensor(1.5, device=device)
scale_b = torch.tensor(0.66, device=device)
out_fp8, amax_fp8 = torch._scaled_mm(x, y)
self.assertEqual(out_fp8.to(torch.float), torch.full(size, 4., device=device))
out_fp8_s, amax_fp8_s = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b)
self.assertEqual(out_fp8, out_fp8_s)
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
def test_float8_bias(self, device) -> None:
(k, l, m) = (16, 48, 32)
x = torch.rand((k, l), device=device).to(torch.float8_e4m3fn)
y = torch.full((m, l), .25, device=device, dtype=torch.float8_e4m3fn).t()
bias = torch.full((m,), 4.0, device=device, dtype=torch.half)
out_fp8, amax_fp8 = torch._scaled_mm(x, y)
outb_fp8, amaxb_fp8 = torch._scaled_mm(x, y, bias=bias)
self.assertEqual((amaxb_fp8 - amax_fp8).item(), 4.0)
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
@parametrize("bias", [True, False])
def test_non_divisible_leading_dim(self, device, bias: torch.bool) -> None:
x = torch.rand((17, 16), device=device).to(torch.float8_e4m3fn)
y = torch.rand((16, 16), device=device).to(torch.float8_e4m3fn).t()
input_bias = None
if bias:
input_bias = torch.rand((16,), device=device).to(torch.half)
out_fp8, amax_fp8 = torch._scaled_mm(x, y, bias=input_bias)
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
def test_float8_bias_relu_edgecase(self, device) -> None:
(k, l, m) = (16, 48, 32)
x = torch.full((k, l), 0.0, device=device).to(torch.float8_e4m3fn)
y = torch.full((m, l), 1.0, device=device, dtype=torch.float8_e4m3fn).t()
bias = torch.full((m,), -3.0, device=device, dtype=torch.half)
outb_fp8, amaxb_fp8 = torch._scaled_mm(x, y, bias=bias)
self.assertEqual(amaxb_fp8.item(), 3.0)
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
def test_float32_output_errors_with_bias(self, device) -> None:
(k, l, m) = (16, 48, 32)
x = torch.rand((k, l), device=device).to(torch.float8_e4m3fn)
y = torch.full((m, l), .25, device=device, dtype=torch.float8_e4m3fn).t()
bias = torch.full((m,), 4.0, device=device, dtype=torch.bfloat16)
self.assertRaisesRegex(
RuntimeError,
"Bias is not supported when out_dtype is set to Float32",
lambda: torch._scaled_mm(x, y, bias=bias, out_dtype=torch.float32),
)
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() >= (9, 0),
"This test is only for devices with compute capability < 9.0")
def test_error_message_fp8_non_h100(self, device) -> None:
(k, l, m) = (16, 48, 32)
x = torch.rand((k, l), device=device).to(torch.float8_e4m3fn)
y = torch.rand((m, l), device=device).to(torch.float8_e4m3fn).t()
self.assertRaisesRegex(
RuntimeError,
r"torch\.\_scaled\_mm is only supported on devices with compute capability \>\= 9\.0",
lambda: torch._scaled_mm(x, y, out_dtype=torch.float32),
)
@unittest.skipIf(not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0), "FP8 is only supported on H100+")
def test_float8_scale_fast_accum(self, device) -> None:
size = (16, 16)
x = torch.full(size, .5, device=device, dtype=torch.float8_e4m3fn)
y = torch.full(size, .5, device=device, dtype=torch.float8_e5m2).t()
scale_a = torch.tensor(1.5, device=device)
scale_b = torch.tensor(0.66, device=device)
out_fp8, amax_fp8 = torch._scaled_mm(x, y, use_fast_accum=True)
self.assertEqual(out_fp8.to(torch.float), torch.full(size, 4., device=device))
out_fp8_s, amax_fp8_s = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b, use_fast_accum=True)
self.assertEqual(out_fp8, out_fp8_s)
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
@unittest.skipIf(IS_WINDOWS, "Windows doesn't support CUTLASS extensions")
@unittest.skipIf(not _IS_SM8X, "mixed dtypes linear only supported on SM 8.x")
class TestMixedDtypesLinearCuda(TestCase):
@dtypes(torch.float16, torch.bfloat16)
def test_mixed_dtypes_linear(self, dtype: torch.dtype, device: str = "cuda"):
version = _get_torch_cuda_version()
if version < (11, 8):
self.skipTest("_mixed_dtypes_linear only compiled for CUDA 11.8+")
def run_test(
batch_shape,
m,
n,
k,
add_bias,
activation,
dtype,
dtypeq,
device,
rtol,
atol,
):
if not add_bias and activation != "none":
return
val_lo, val_hi = -1, 1
valq_lo, valq_hi = -2, 2
input = make_tensor(
*batch_shape, m, k, low=val_lo, high=val_hi, dtype=dtype, device=device
)
weight = make_tensor(
n, k, low=valq_lo, high=valq_hi, dtype=torch.int8, device=device
)
scale = make_tensor(
(n,), low=val_lo, high=val_hi, dtype=input.dtype, device=device
)
bias = (
make_tensor(
(n,), low=val_lo, high=val_hi, dtype=input.dtype, device=device
)
if add_bias
else None
)
input_ref = input.reshape(-1, input.shape[-1])
# First, test plain multiplication.
weight_ref = weight.T.to(input.dtype) * scale.view(1, n)
weightq = (
pack_int4_to_int8(weight.T) if dtypeq == torch.quint4x2 else weight.T
)
output_ref = torch.mm(input_ref, weight_ref).reshape(*input.shape[:-1], n)
output = torch.ops.aten._mixed_dtypes_linear(
input,
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass(
weightq, dtypeq, transpose=False
),
scale,
)
torch.testing.assert_close(output, output_ref, rtol=rtol, atol=atol)
# Second, test the linear operator itself.
weight_ref = weight.to(input.dtype) * scale.view(n, 1)
weightq = pack_int4_to_int8(weight) if dtypeq == torch.quint4x2 else weight
bias_ref = bias.view(1, n) if add_bias else None
output_ref = torch.nn.functional.linear(
input_ref, weight_ref, bias=bias_ref
).reshape(*input.shape[:-1], n)
if activation == "relu":
relu = torch.nn.ReLU()
output_ref = relu(output_ref)
elif activation == "silu":
silu = torch.nn.SiLU()
output_ref = silu(output_ref)
output = torch.ops.aten._mixed_dtypes_linear(
input,
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass(
weightq, dtypeq, transpose=True
),
scale,
bias=bias,
activation=activation,
)
torch.testing.assert_close(output, output_ref, rtol=rtol, atol=atol)
dtypeqs = [torch.int8, torch.quint4x2]
batch_shapes = [[], [2], [2, 1]]
shapes = [
[8, 64, 64],
[8, 64, 128],
[8, 128, 64],
[8, 128, 128],
[8, 128, 192],
[8, 128, 256],
[8, 256, 128],
[8, 256, 384],
[8, 384, 256],
]
activations = [None, "relu", "silu"]
rtol, atol = 1e-3, 1e-3
if dtype == torch.bfloat16:
rtol, atol = 1e-2, 1e-3
for dtypeq, batch_shape, (m, n, k), add_bias, activation in product(
dtypeqs, batch_shapes, shapes, (False, True), activations
):
run_test(
batch_shape,
m,
n,
k,
add_bias,
activation,
dtype,
dtypeq,
device,
rtol,
atol,
)
instantiate_device_type_tests(TestMatmulCuda, globals(), except_for="cpu")
instantiate_device_type_tests(TestFP8MatmulCuda, globals(), except_for="cpu")
instantiate_device_type_tests(TestMixedDtypesLinearCuda, globals(), except_for="cpu")
if __name__ == '__main__':
TestCase._default_dtype_check_enabled = True
run_tests()