forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.h
358 lines (306 loc) · 10.2 KB
/
stats.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#pragma once
#include <atomic>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
#include <vector>
#include "caffe2/core/logging.h"
#include "c10/util/static_tracepoint.h"
namespace caffe2 {
class TORCH_API StatValue {
std::atomic<int64_t> v_{0};
public:
int64_t increment(int64_t inc) {
return v_ += inc;
}
int64_t reset(int64_t value = 0) {
return v_.exchange(value);
}
int64_t get() const {
return v_.load();
}
};
struct TORCH_API ExportedStatValue {
std::string key;
int64_t value;
std::chrono::time_point<std::chrono::high_resolution_clock> ts;
};
/**
* @brief Holds names and values of counters exported from a StatRegistry.
*/
using ExportedStatList = std::vector<ExportedStatValue>;
using ExportedStatMap = std::unordered_map<std::string, int64_t>;
TORCH_API ExportedStatMap toMap(const ExportedStatList& stats);
/**
* @brief Holds a map of atomic counters keyed by name.
*
* The StatRegistry singleton, accessed through StatRegistry::get(), holds
* counters registered through the macro CAFFE_EXPORTED_STAT. Example of usage:
*
* struct MyCaffeClass {
* MyCaffeClass(const std::string& instanceName): stats_(instanceName) {}
* void run(int numRuns) {
* try {
* CAFFE_EVENT(stats_, num_runs, numRuns);
* tryRun(numRuns);
* CAFFE_EVENT(stats_, num_successes);
* } catch (std::exception& e) {
* CAFFE_EVENT(stats_, num_failures, 1, "arg_to_usdt", e.what());
* }
* CAFFE_EVENT(stats_, usdt_only, 1, "arg_to_usdt");
* }
* private:
* struct MyStats {
* CAFFE_STAT_CTOR(MyStats);
* CAFFE_EXPORTED_STAT(num_runs);
* CAFFE_EXPORTED_STAT(num_successes);
* CAFFE_EXPORTED_STAT(num_failures);
* CAFFE_STAT(usdt_only);
* } stats_;
* };
*
* int main() {
* MyCaffeClass a("first");
* MyCaffeClass b("second");
* for (const auto i : c10::irange(10)) {
* a.run(10);
* b.run(5);
* }
* ExportedStatList finalStats;
* StatRegistry::get().publish(finalStats);
* }
*
* For every new instance of MyCaffeClass, a new counter is created with
* the instance name as prefix. Everytime run() is called, the corresponding
* counter will be incremented by the given value, or 1 if value not provided.
*
* Counter values can then be exported into an ExportedStatList. In the
* example above, considering "tryRun" never throws, `finalStats` will be
* populated as follows:
*
* first/num_runs 100
* first/num_successes 10
* first/num_failures 0
* second/num_runs 50
* second/num_successes 10
* second/num_failures 0
*
* The event usdt_only is not present in ExportedStatList because it is declared
* as CAFFE_STAT, which does not create a counter.
*
* Additionally, for each call to CAFFE_EVENT, a USDT probe is generated.
* The probe will be set up with the following arguments:
* - Probe name: field name (e.g. "num_runs")
* - Arg #0: instance name (e.g. "first", "second")
* - Arg #1: For CAFFE_EXPORTED_STAT, value of the updated counter
* For CAFFE_STAT, -1 since no counter is available
* - Args ...: Arguments passed to CAFFE_EVENT, including update value
* when provided.
*
* It is also possible to create additional StatRegistry instances beyond
* the singleton. These instances are not automatically populated with
* CAFFE_EVENT. Instead, they can be populated from an ExportedStatList
* structure by calling StatRegistry::update().
*
*/
class TORCH_API StatRegistry {
std::mutex mutex_;
std::unordered_map<std::string, std::unique_ptr<StatValue>> stats_;
public:
/**
* Retrieve the singleton StatRegistry, which gets populated
* through the CAFFE_EVENT macro.
*/
static StatRegistry& get();
/**
* Add a new counter with given name. If a counter for this name already
* exists, returns a pointer to it.
*/
StatValue* add(const std::string& name);
/**
* Populate an ExportedStatList with current counter values.
* If `reset` is true, resets all counters to zero. It is guaranteed that no
* count is lost.
*/
void publish(ExportedStatList& exported, bool reset = false);
ExportedStatList publish(bool reset = false) {
ExportedStatList stats;
publish(stats, reset);
return stats;
}
/**
* Update values of counters contained in the given ExportedStatList to
* the values provided, creating counters that don't exist.
*/
void update(const ExportedStatList& data);
~StatRegistry();
};
struct TORCH_API Stat {
std::string groupName;
std::string name;
Stat(const std::string& gn, const std::string& n) : groupName(gn), name(n) {}
template <typename... Unused>
int64_t increment(Unused...) {
return -1;
}
};
class TORCH_API ExportedStat : public Stat {
StatValue* value_;
public:
ExportedStat(const std::string& gn, const std::string& n)
: Stat(gn, n), value_(StatRegistry::get().add(gn + "/" + n)) {}
int64_t increment(int64_t value = 1) {
return value_->increment(value);
}
template <typename T, typename Unused1, typename... Unused>
int64_t increment(T value, Unused1, Unused...) {
return increment(value);
}
};
class TORCH_API AvgExportedStat : public ExportedStat {
private:
ExportedStat count_;
public:
AvgExportedStat(const std::string& gn, const std::string& n)
: ExportedStat(gn, n + "/sum"), count_(gn, n + "/count") {}
int64_t increment(int64_t value = 1) {
count_.increment();
return ExportedStat::increment(value);
}
template <typename T, typename Unused1, typename... Unused>
int64_t increment(T value, Unused1, Unused...) {
return increment(value);
}
};
class TORCH_API StdDevExportedStat : public ExportedStat {
// Uses an offset (first_) to remove issue of cancellation
// Variance is then (sumsqoffset_ - (sumoffset_^2) / count_) / (count_ - 1)
private:
ExportedStat count_;
ExportedStat sumsqoffset_;
ExportedStat sumoffset_;
std::atomic<int64_t> first_{std::numeric_limits<int64_t>::min()};
int64_t const_min_{std::numeric_limits<int64_t>::min()};
public:
StdDevExportedStat(const std::string& gn, const std::string& n)
: ExportedStat(gn, n + "/sum"),
count_(gn, n + "/count"),
sumsqoffset_(gn, n + "/sumsqoffset"),
sumoffset_(gn, n + "/sumoffset") {}
int64_t increment(int64_t value = 1) {
first_.compare_exchange_strong(const_min_, value);
int64_t offset_value = first_.load();
int64_t orig_value = value;
value -= offset_value;
count_.increment();
sumsqoffset_.increment(value * value);
sumoffset_.increment(value);
return ExportedStat::increment(orig_value);
}
template <typename T, typename Unused1, typename... Unused>
int64_t increment(T value, Unused1, Unused...) {
return increment(value);
}
};
class TORCH_API DetailedExportedStat : public ExportedStat {
private:
std::vector<ExportedStat> details_;
public:
DetailedExportedStat(const std::string& gn, const std::string& n)
: ExportedStat(gn, n) {}
void setDetails(const std::vector<std::string>& detailNames) {
details_.clear();
for (const auto& detailName : detailNames) {
details_.emplace_back(groupName, name + "/" + detailName);
}
}
template <typename T, typename... Unused>
int64_t increment(T value, size_t detailIndex, Unused...) {
if (detailIndex < details_.size()) {
details_[detailIndex].increment(value);
}
return ExportedStat::increment(value);
}
};
class TORCH_API StaticStat : public Stat {
private:
StatValue* value_;
public:
StaticStat(const std::string& groupName, const std::string& name)
: Stat(groupName, name),
value_(StatRegistry::get().add(groupName + "/" + name)) {}
int64_t increment(int64_t value = 1) {
return value_->reset(value);
}
template <typename T, typename Unused1, typename... Unused>
int64_t increment(T value, Unused1, Unused...) {
return increment(value);
}
};
namespace detail {
template <class T>
struct _ScopeGuard {
T f_;
std::chrono::high_resolution_clock::time_point start_;
explicit _ScopeGuard(T f)
: f_(f), start_(std::chrono::high_resolution_clock::now()) {}
~_ScopeGuard() {
using namespace std::chrono;
auto duration = high_resolution_clock::now() - start_;
int64_t nanos = duration_cast<nanoseconds>(duration).count();
f_(nanos);
}
// Using implicit cast to bool so that it can be used in an 'if' condition
// within CAFFE_DURATION macro below.
/* implicit */ operator bool() {
return true;
}
};
template <class T>
_ScopeGuard<T> ScopeGuard(T f) {
return _ScopeGuard<T>(f);
}
} // namespace detail
#define CAFFE_STAT_CTOR(ClassName) \
ClassName(std::string name) : groupName(name) {} \
std::string groupName
#define CAFFE_EXPORTED_STAT(name) \
ExportedStat name { \
groupName, #name \
}
#define CAFFE_AVG_EXPORTED_STAT(name) \
AvgExportedStat name { \
groupName, #name \
}
#define CAFFE_STDDEV_EXPORTED_STAT(name) \
StdDevExportedStat name { \
groupName, #name \
}
#define CAFFE_DETAILED_EXPORTED_STAT(name) \
DetailedExportedStat name { \
groupName, #name \
}
#define CAFFE_STAT(name) \
Stat name { \
groupName, #name \
}
#define CAFFE_STATIC_STAT(name) \
StaticStat name { \
groupName, #name \
}
#define CAFFE_EVENT(stats, field, ...) \
{ \
auto __caffe_event_value_ = stats.field.increment(__VA_ARGS__); \
TORCH_SDT( \
field, \
stats.field.groupName.c_str(), \
__caffe_event_value_, \
##__VA_ARGS__); \
(void)__caffe_event_value_; \
}
#define CAFFE_DURATION(stats, field, ...) \
if (auto g = ::caffe2::detail::ScopeGuard([&](int64_t nanos) { \
CAFFE_EVENT(stats, field, nanos, ##__VA_ARGS__); \
}))
} // namespace caffe2