forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSummaryOps.cpp
85 lines (74 loc) · 2.79 KB
/
SummaryOps.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
// Returns the frequency of elements of input non-negative integer tensor.
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/bincount_native.h>
#include <ATen/ops/zeros.h>
#endif
namespace at { namespace native {
///////////////// bincount /////////////////
namespace {
template <typename input_t, typename weights_t>
Tensor _bincount_cpu_template(
const Tensor& self,
const Tensor& weights,
int64_t minlength) {
if (minlength < 0) {
AT_ERROR("minlength should be >= 0");
}
if (self.dim() == 1 && self.numel() == 0) {
return at::zeros({minlength}, kLong);
}
if (self.dim() != 1 || *self.min().data_ptr<input_t>() < 0) {
AT_ERROR("bincount only supports 1-d non-negative integral inputs.");
}
bool has_weights = weights.defined();
if (has_weights && (weights.dim() != 1 || weights.size(0) != self.size(0))) {
AT_ERROR("weights should be 1-d and have the same length as input");
}
Tensor output;
int64_t self_size = self.size(0);
int64_t nbins = static_cast<int64_t>(*self.max().data_ptr<input_t>()) + 1L;
nbins = std::max(nbins, minlength); // at least minlength # of bins
const input_t* self_p = self.data_ptr<input_t>();
if (has_weights) {
output = at::zeros(
{nbins},
optTypeMetaToScalarType(weights.options().dtype_opt()),
weights.options().layout_opt(),
weights.options().device_opt(),
weights.options().pinned_memory_opt());
weights_t* output_p = output.data_ptr<weights_t>();
const weights_t* weights_p = weights.data_ptr<weights_t>();
for (const auto i : c10::irange(self_size)) {
output_p[self_p[i]] += weights_p[i];
}
} else {
output = at::zeros({nbins}, kLong);
int64_t* output_p = output.data_ptr<int64_t>();
for (const auto i : c10::irange(self_size)) {
output_p[self_p[i]] += 1L;
}
}
return output;
}
} // namespace
Tensor
_bincount_cpu(const Tensor& self, const c10::optional<Tensor>& weights_opt, int64_t minlength) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weights_maybe_owned = at::borrow_from_optional_tensor(weights_opt);
const Tensor& weights = *weights_maybe_owned;
return AT_DISPATCH_INTEGRAL_TYPES(self.scalar_type(), "bincount_cpu", [&] {
const auto scalar = weights.scalar_type();
if (scalar == ScalarType::Undefined || scalar == ScalarType::Float)
return _bincount_cpu_template<scalar_t, float>(self.contiguous(), weights.contiguous(), minlength);
return _bincount_cpu_template<scalar_t, double>(
self.contiguous(), weights.contiguous().to(kDouble), minlength);
});
}
}} // namespace at::native