forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSegmentReduce.cpp
569 lines (523 loc) · 22.5 KB
/
SegmentReduce.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/SegmentReduce.h>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/NumericUtils.h>
#include <ATen/TensorOperators.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_segment_reduce_backward_native.h>
#include <ATen/ops/all.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/segment_reduce_native.h>
#include <ATen/ops/zeros.h>
#endif
namespace at {
namespace native {
DEFINE_DISPATCH(_segment_reduce_lengths_stub);
DEFINE_DISPATCH(_segment_reduce_offsets_stub);
DEFINE_DISPATCH(_segment_reduce_lengths_backward_stub);
DEFINE_DISPATCH(_segment_reduce_offsets_backward_stub);
namespace {
template <typename T, bool is_offsets_like=false>
void _segment_reduce_lengths_cpu_kernel1(
ReductionType reduction,
const Tensor& data,
const T* lengths_data,
int64_t axis,
const c10::optional<Scalar>& initial,
Tensor& output,
int64_t segment_count,
int64_t lengths_stride_axis) {
// outer_offset is the size of the outer dimensions of output (before axis)
// inner_offset is the size of the inner dimensions of output (after axis)
int64_t outer_offset = 1, inner_offset = 1;
for (int64_t d = 0; d < axis; d++)
outer_offset *= output.size(d);
for (int64_t d = axis + 1; d < output.dim(); d++)
inner_offset *= output.size(d);
int64_t lengths_size_axis = is_offsets_like ? segment_count + 1 : segment_count;
auto data_stride_axis = data.stride(axis);
auto data_size_axis = data.size(axis);
auto output_stride_axis = output.stride(axis);
auto output_size_axis = output.size(axis);
AT_DISPATCH_FLOATING_TYPES_AND2(
kBFloat16, kHalf, data.scalar_type(), "_segment_reduce_cpu", [&]() {
auto* output_data = output.data_ptr<scalar_t>();
const auto* values_data = data.data_ptr<scalar_t>();
for (const auto outer_idx : c10::irange(outer_offset)) {
int64_t segment_start, segment_length;
int64_t segment_end = is_offsets_like ?
lengths_data[outer_idx * lengths_stride_axis * lengths_size_axis] :
0;
for (const auto dim_idx : c10::irange(segment_count)) {
segment_start = segment_end;
auto lengths_idx = outer_idx * lengths_stride_axis * lengths_size_axis + dim_idx;
if (is_offsets_like) {
segment_end = lengths_data[lengths_idx + 1];
segment_length = segment_end - segment_start;
} else {
segment_length = lengths_data[lengths_idx];
segment_end += segment_length;
}
for (const auto inner_idx : c10::irange(inner_offset)) {
// ===== step1: initialize starting value
scalar_t initial_value;
if (initial.has_value()) {
initial_value = initial.value().to<scalar_t>();
} else if (reduction == ReductionType::MAX) {
initial_value = -std::numeric_limits<scalar_t>::infinity();
} else if (
reduction == ReductionType::MEAN ||
reduction == ReductionType::SUM) {
initial_value = 0;
} else if (reduction == ReductionType::MIN) {
initial_value = std::numeric_limits<scalar_t>::infinity();
} else if (reduction == ReductionType::PROD) {
initial_value = 1;
}
// ===== step2: apply reduction
for (const auto j : c10::irange(segment_start, segment_end)) {
int64_t data_index = outer_idx * data_stride_axis * data_size_axis
+ j * data_stride_axis + inner_idx;
const auto val = values_data[data_index];
if (reduction == ReductionType::MAX) {
initial_value = at::_isnan(val)
? val
: std::max<scalar_t>(initial_value, val);
} else if (
reduction == ReductionType::MEAN ||
reduction == ReductionType::SUM) {
initial_value = initial_value + val;
} else if (reduction == ReductionType::MIN) {
initial_value = at::_isnan(val)
? val
: std::min<scalar_t>(initial_value, val);
} else if (reduction == ReductionType::PROD) {
initial_value = initial_value * val;
}
}
// ===== step3: finalize reduction
TORCH_CHECK(segment_length >= 0);
if (segment_length == 0 && !initial.has_value() &&
reduction == ReductionType::MEAN) {
initial_value = static_cast<scalar_t>(NAN);
} else if (
reduction == ReductionType::MEAN &&
segment_length > 0 && !at::_isnan(initial_value)) {
initial_value = initial_value / segment_length;
}
int64_t output_index = outer_idx * output_stride_axis * output_size_axis
+ dim_idx * output_stride_axis + inner_idx;
output_data[output_index] = initial_value;
}
}
}
});
}
Tensor _segment_reduce_lengths_cpu_kernel(
ReductionType reduction,
const Tensor& data,
const Tensor& lengths,
int64_t axis,
const c10::optional<Scalar>& initial) {
// data and lengths should be contiguous from the call to .contiguous in segment_reduce_kernel
TORCH_CHECK(data.is_contiguous(), "Expected data to be contiguous.");
TORCH_CHECK(lengths.is_contiguous(), "Expected lengths to be contiguous.");
// reduction axis should always be the last dimension of lengths
axis = lengths.dim() - 1;
int64_t segment_count = lengths.size(axis);
int64_t lengths_stride_axis = lengths.stride(axis);
auto output_shape = data.sizes().vec();
output_shape[axis] = segment_count;
auto output = at::empty(output_shape, data.options());
AT_DISPATCH_INDEX_TYPES(lengths.scalar_type(), "_segment_reduce_lengths_cpu_kernel1", [&]() {
const auto* lengths_data = lengths.data_ptr<index_t>();
_segment_reduce_lengths_cpu_kernel1(
reduction, data, lengths_data, axis, initial, output, segment_count, lengths_stride_axis);
});
return output;
}
Tensor _segment_reduce_offsets_cpu_kernel(
ReductionType reduction,
const Tensor& data,
const Tensor& offsets,
int64_t axis,
const c10::optional<Scalar>& initial) {
// data and lengths should be contiguous from the call to .contiguous in segment_reduce_kernel
TORCH_CHECK(data.is_contiguous(), "Expected data to be contiguous.");
TORCH_CHECK(offsets.is_contiguous(), "Expected offsets to be contiguous.");
// reduction axis should always be the last dimension of lengths
axis = offsets.dim() - 1;
int64_t segment_count = offsets.size(axis) - 1;
int64_t offsets_stride_axis = offsets.stride(axis);
auto output_shape = data.sizes().vec();
output_shape[axis] = segment_count;
auto output = at::empty(output_shape, data.options());
AT_DISPATCH_INDEX_TYPES(offsets.scalar_type(), "_segment_reduce_offsets_cpu_kernel1", [&]() {
const auto* offsets_data = offsets.data_ptr<index_t>();
_segment_reduce_lengths_cpu_kernel1<index_t, /*is_offsets_like=*/true>(
reduction, data, offsets_data, axis, initial, output, segment_count, offsets_stride_axis);
});
return output;
}
template <typename T, bool is_offsets_like = false>
void _segment_reduce_cpu_lengths_backward_kernel1(
const Tensor& grad_contig,
const Tensor& output_contig,
const Tensor& data_contig,
ReductionType reduction,
const T* lengths_data,
int64_t axis,
const c10::optional<Scalar>& initial,
Tensor& grad_input,
int64_t segment_count,
int64_t lengths_stride_axis) {
// outer_offset is the size of the outer dimensions of output (before axis)
// inner_offset is the size of the inner dimensions of output (after axis)
int64_t outer_offset = 1, inner_offset = 1;
for (int64_t d = 0; d < axis; d++)
outer_offset *= output_contig.size(d);
for (int64_t d = axis + 1; d < output_contig.dim(); d++)
inner_offset *= output_contig.size(d);
int64_t lengths_size_axis = is_offsets_like ? segment_count + 1 : segment_count;
auto data_stride_axis = data_contig.stride(axis);
auto data_size_axis = data_contig.size(axis);
auto output_stride_axis = output_contig.stride(axis);
auto output_size_axis = output_contig.size(axis);
// TODO: Switch to TensorIterator for better maintainablility and
// readability
AT_DISPATCH_FLOATING_TYPES_AND2(
kBFloat16,
kHalf,
data_contig.scalar_type(),
"_segment_reduce_cpu",
[&]() {
auto* output_data = output_contig.data_ptr<scalar_t>();
auto* grad_data = grad_contig.data_ptr<scalar_t>();
auto* grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
const auto* values_data = data_contig.data_ptr<scalar_t>();
// Used to calculate exclusive prod
scalar_t initial_prod_value;
if (reduction == ReductionType::PROD) {
if (initial.has_value()) {
initial_prod_value = initial.value().to<scalar_t>();
} else {
initial_prod_value = 1;
}
}
for (const auto outer_idx : c10::irange(outer_offset)) {
// int64_t lengths_cum_sum = 0;
int64_t segment_start, segment_length;
int64_t segment_end = is_offsets_like ?
lengths_data[outer_idx * lengths_stride_axis * lengths_size_axis] :
0;
for (const auto dim_idx : c10::irange(segment_count)) {
// int64_t segment_length = lengths_data[outer_idx * lengths_stride_axis * segment_count + dim_idx];
segment_start = segment_end;
auto lengths_idx = outer_idx * lengths_stride_axis * lengths_size_axis + dim_idx;
if (is_offsets_like) {
segment_end = lengths_data[lengths_idx + 1];
segment_length = segment_end - segment_start;
} else {
segment_length = lengths_data[lengths_idx];
segment_end += segment_length;
}
if (segment_length == 0) {
continue;
}
for (const auto inner_idx : c10::irange(inner_offset)) {
int64_t output_index = outer_idx * output_stride_axis * output_size_axis
+ dim_idx * output_stride_axis + inner_idx;
if (reduction == ReductionType::MAX ||
reduction == ReductionType::MIN) {
int64_t counter = 0;
for (const auto j : c10::irange(segment_start, segment_end)) {
int64_t data_index = outer_idx * data_stride_axis * data_size_axis
+ j * data_stride_axis + inner_idx;
if (at::_isnan(values_data[data_index]) ||
values_data[data_index] == output_data[output_index]) {
grad_input_data[data_index] = grad_data[output_index];
counter++;
}
}
// Average gradient based on number of maximum elements in
// the segment
if (counter < 2) {
continue;
}
for (const auto j : c10::irange(segment_start, segment_end)) {
int64_t data_index = outer_idx * data_stride_axis * data_size_axis
+ j * data_stride_axis + inner_idx;
if (grad_input_data[data_index] > 0) {
grad_input_data[data_index] =
grad_input_data[data_index] / counter;
}
}
} else if (reduction == ReductionType::MEAN) {
auto grad_val = grad_data[output_index] / segment_length;
for (const auto j : c10::irange(segment_start, segment_end)) {
int64_t data_index = outer_idx * data_stride_axis * data_size_axis
+ j * data_stride_axis + inner_idx;
grad_input_data[data_index] = grad_val;
}
} else if (reduction == ReductionType::SUM) {
const auto& grad_val = grad_data[output_index];
for (const auto j : c10::irange(segment_start, segment_end)) {
int64_t data_index = outer_idx * data_stride_axis * data_size_axis
+ j * data_stride_axis + inner_idx;
grad_input_data[data_index] = grad_val;
}
} else if (reduction == ReductionType::PROD) {
const auto& grad_val = grad_data[output_index] * output_data[output_index];
for (const auto j : c10::irange(segment_start, segment_end)) {
int64_t data_index = outer_idx * data_stride_axis * data_size_axis
+ j * data_stride_axis + inner_idx;
if (at::_isnan(values_data[data_index]) ||
values_data[data_index] == 0) {
// explicitly compute exclusive prod
scalar_t exclusive_prod = initial_prod_value;
int64_t idx;
for (const auto k : c10::irange(segment_start, segment_end)) {
if (k != j) {
idx = outer_idx * data_stride_axis * data_size_axis
+ k * data_stride_axis + inner_idx;
exclusive_prod *= values_data[idx];
}
}
grad_input_data[data_index] = grad_data[output_index] * exclusive_prod;
} else {
grad_input_data[data_index] = grad_val / values_data[data_index];
}
}
}
}
}
}
});
}
Tensor _segment_reduce_cpu_lengths_backward_kernel(
const Tensor& grad_contig,
const Tensor& output_contig,
const Tensor& data_contig,
ReductionType reduction,
const Tensor& lengths_contig,
int64_t axis,
const c10::optional<Scalar>& initial) {
axis = lengths_contig.dim() - 1;
int64_t segment_count = lengths_contig.size(axis);
int64_t lengths_stride_axis = lengths_contig.stride(axis);
auto grad_input = at::zeros({data_contig.sizes()}, grad_contig.options());
AT_DISPATCH_INDEX_TYPES(
lengths_contig.scalar_type(), "_segment_reduce_cpu_lengths_backward_kernel1", [&] {
const auto* lengths_data = lengths_contig.data_ptr<index_t>();
_segment_reduce_cpu_lengths_backward_kernel1(
grad_contig,
output_contig,
data_contig,
reduction,
lengths_data,
axis,
initial,
grad_input,
segment_count,
lengths_stride_axis);
});
return grad_input;
}
Tensor _segment_reduce_cpu_offsets_backward_kernel(
const Tensor& grad_contig,
const Tensor& output_contig,
const Tensor& data_contig,
ReductionType reduction,
const Tensor& offsets_contig,
int64_t axis,
const c10::optional<Scalar>& initial) {
axis = offsets_contig.dim() - 1;
int64_t segment_count = offsets_contig.size(axis) - 1;
int64_t offsets_stride_axis = offsets_contig.stride(axis);
auto grad_input = at::zeros({data_contig.sizes()}, grad_contig.options());
AT_DISPATCH_INDEX_TYPES(
offsets_contig.scalar_type(), "_segment_reduce_cpu_offsets_backward_kernel1", [&] {
const auto* offsets_data = offsets_contig.data_ptr<index_t>();
_segment_reduce_cpu_lengths_backward_kernel1<index_t, /*is_offsets_like=*/true>(
grad_contig,
output_contig,
data_contig,
reduction,
offsets_data,
axis,
initial,
grad_input,
segment_count,
offsets_stride_axis);
});
return grad_input;
}
} // namespace
Tensor segment_reduce_kernel(
const Tensor& data,
c10::string_view reduce,
const c10::optional<Tensor>& lengths,
const c10::optional<Tensor>& indices,
const c10::optional<Tensor>& offsets,
int64_t axis,
bool unsafe,
const c10::optional<Scalar>& initial) {
axis = maybe_wrap_dim(axis, data.ndimension());
TORCH_CHECK(data.numel() >= 0);
// check that one of lengths or offsets is defined
auto lengths_has_value = lengths.has_value();
auto offsets_has_value = offsets.has_value();
TORCH_CHECK(
!indices.has_value(),
"segment_reduce(): indices based reduction is not supported yet.");
TORCH_CHECK(
lengths_has_value || offsets_has_value,
"segment_reduce(): Either lengths or offsets must be defined.")
auto reduction = get_reduction_enum(reduce);
const auto data_contig = data.contiguous();
if (offsets_has_value) {
const auto& offsets_value = offsets.value();
// offsets related checks
TORCH_CHECK(data.get_device() == offsets_value.get_device());
TORCH_CHECK(data.dim() >= offsets_value.dim());
TORCH_CHECK(axis == offsets_value.dim() - 1,
"segment_reduce(): Expected axis to be the last dimension of offsets but got ", axis, ".");
// TODO: add checks when !unsafe
const auto offsets_contig = offsets_value.contiguous();
return _segment_reduce_offsets_stub(
data_contig.device().type(),
reduction,
data_contig,
offsets_contig,
axis,
initial);
} else {
const auto& lengths_value = lengths.value();
// length related checks
TORCH_CHECK(data.get_device() == lengths_value.get_device());
TORCH_CHECK(data.dim() >= lengths_value.dim());
TORCH_CHECK(axis == lengths_value.dim() - 1,
"segment_reduce(): Expected axis to be the last dimension of lengths but got ", axis, ".");
if (!unsafe) {
auto min_length = lengths_value.min().item<int64_t>();
TORCH_CHECK((min_length >= 0), "lengths contains negative value!");
TORCH_CHECK(all(lengths_value.sum({-1}) == data.size(axis)).item<bool>(),
"segment_reduce(): Expected all rows of lengths along axis ",
"to sum to data.size(lengths.dim()-1) when !unsafe.");
}
const auto lengths_contig = lengths_value.contiguous();
return _segment_reduce_lengths_stub(
data_contig.device().type(),
reduction,
data_contig,
lengths_contig,
axis,
initial);
}
}
REGISTER_ARCH_DISPATCH(
_segment_reduce_lengths_stub,
DEFAULT,
&_segment_reduce_lengths_cpu_kernel);
REGISTER_AVX2_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel);
REGISTER_AVX512_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel);
REGISTER_VSX_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel);
REGISTER_ZVECTOR_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel);
// offsets dispatches
REGISTER_ARCH_DISPATCH(
_segment_reduce_offsets_stub,
DEFAULT,
&_segment_reduce_offsets_cpu_kernel);
REGISTER_AVX2_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel);
REGISTER_AVX512_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel);
REGISTER_VSX_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel);
REGISTER_ZVECTOR_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel);
// Currently some computation is being duplicated across forward and backward.
// TODO: Cache indices in forward pass to re-use in backward
Tensor _segment_reduce_backward_kernel(
const Tensor& grad,
const Tensor& output,
const Tensor& data,
c10::string_view reduce,
const c10::optional<Tensor>& lengths,
const c10::optional<Tensor>& offsets,
int64_t axis,
const c10::optional<Scalar>& initial) {
axis = maybe_wrap_dim(axis, data.ndimension());
// check that one of lengths or offsets is defined
// codegen for derivatives.yaml passes an undefined Tensor for None rather than a c10::optional
// so checking .has_value() doesn't work unlike in the forward pass
auto lengths_has_value = lengths.has_value() && lengths.value().defined();
auto offsets_has_value = offsets.has_value() && offsets.value().defined();
TORCH_CHECK(
lengths_has_value || offsets_has_value,
"segment_reduce(): Either lengths or offsets must be defined.");
const auto grad_contig = grad.contiguous();
const auto output_contig = output.contiguous();
const auto data_contig = data.contiguous();
auto reduction = get_reduction_enum(reduce);
if (offsets_has_value) {
const auto& offsets_value = offsets.value();
const auto offsets_contig = offsets_value.contiguous();
return _segment_reduce_offsets_backward_stub(
grad_contig.device().type(),
grad_contig,
output_contig,
data_contig,
reduction,
offsets_contig,
axis,
initial);
} else {
const auto& lengths_value = lengths.value();
const auto lengths_contig = lengths_value.contiguous();
return _segment_reduce_lengths_backward_stub(
grad_contig.device().type(),
grad_contig,
output_contig,
data_contig,
reduction,
lengths_contig,
axis,
initial);
}
}
REGISTER_ARCH_DISPATCH(
_segment_reduce_lengths_backward_stub,
DEFAULT,
&_segment_reduce_cpu_lengths_backward_kernel);
REGISTER_AVX512_DISPATCH(
_segment_reduce_lengths_backward_stub,
&_segment_reduce_cpu_lengths_backward_kernel);
REGISTER_AVX2_DISPATCH(
_segment_reduce_lengths_backward_stub,
&_segment_reduce_cpu_lengths_backward_kernel);
REGISTER_VSX_DISPATCH(
_segment_reduce_lengths_backward_stub,
&_segment_reduce_cpu_lengths_backward_kernel);
REGISTER_ZVECTOR_DISPATCH(
_segment_reduce_lengths_backward_stub,
&_segment_reduce_cpu_lengths_backward_kernel);
REGISTER_ARCH_DISPATCH(
_segment_reduce_offsets_backward_stub,
DEFAULT,
&_segment_reduce_cpu_offsets_backward_kernel);
REGISTER_AVX512_DISPATCH(
_segment_reduce_offsets_backward_stub,
&_segment_reduce_cpu_offsets_backward_kernel);
REGISTER_AVX2_DISPATCH(
_segment_reduce_offsets_backward_stub,
&_segment_reduce_cpu_offsets_backward_kernel);
REGISTER_VSX_DISPATCH(
_segment_reduce_offsets_backward_stub,
&_segment_reduce_cpu_offsets_backward_kernel);
REGISTER_ZVECTOR_DISPATCH(
_segment_reduce_offsets_backward_stub,
&_segment_reduce_cpu_offsets_backward_kernel);
} // namespace native
} // namespace at