forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPooling.cpp
190 lines (167 loc) · 5.51 KB
/
Pooling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/TensorUtils.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/native/xnnpack/Engine.h>
#include <c10/util/Exception.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/adaptive_avg_pool1d_native.h>
#include <ATen/ops/adaptive_avg_pool2d.h>
#include <ATen/ops/adaptive_max_pool1d_native.h>
#include <ATen/ops/adaptive_max_pool2d.h>
#include <ATen/ops/avg_pool1d_native.h>
#include <ATen/ops/avg_pool2d.h>
#include <ATen/ops/max_pool1d_with_indices_native.h>
#include <ATen/ops/max_pool2d_native.h>
#include <ATen/ops/max_pool2d_with_indices.h>
#include <ATen/ops/max_pool3d_native.h>
#include <ATen/ops/max_pool3d_with_indices.h>
#include <ATen/ops/mkldnn_max_pool2d.h>
#include <ATen/ops/mkldnn_max_pool3d.h>
#include <ATen/ops/quantized_max_pool2d.h>
#include <ATen/ops/quantized_max_pool3d.h>
#endif
#include <tuple>
namespace at { namespace native {
static void check1d(
const char* function_name,
const char* argument_name,
IntArrayRef x) {
TORCH_CHECK(
x.size() == 1,
function_name, "() argument '", argument_name,
"' should contain one int (got ", x.size(), ")");
}
Tensor adaptive_avg_pool1d(const Tensor & self, IntArrayRef output_size) {
checkDimRange("adaptive_avg_pool1d", TensorArg(self, "self", 1), 2, 4 /* exclusive */);
check1d("adaptive_avg_pool1d", "output_size", output_size);
auto output = at::adaptive_avg_pool2d(
self.unsqueeze(-2),
{1, output_size[0]});
return output.squeeze(-2);
}
std::tuple<Tensor,Tensor> adaptive_max_pool1d(const Tensor & self, IntArrayRef output_size) {
checkDimRange("adaptive_max_pool1d", TensorArg(self, "self", 1), 2, 4 /* exclusive */);
check1d("adaptive_max_pool1d", "output_size", output_size);
int ndim = self.ndimension();
for (const auto i : c10::irange(1, ndim)) {
TORCH_CHECK(
self.sym_size(i) > 0,
"adaptive_max_pool1d(): ",
"Expected input to have non-zero size for non-batch dimensions, "
"but input has sizes ",
self.sym_sizes(),
" with dimension ",
i,
" being empty");
}
Tensor output, indices;
std::tie(output, indices) = at::adaptive_max_pool2d(
self.unsqueeze(-2),
{1, output_size[0]});
return std::make_tuple(output.squeeze(-2), indices.squeeze(-2));
}
std::tuple<Tensor, Tensor> max_pool1d_with_indices(
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode) {
if (stride.empty()) {
stride = kernel_size;
}
checkDimRange("max_pool1d", TensorArg(self, "self", 1), 2, 4 /* exclusive */);
check1d("max_pool1d", "kernel_size", kernel_size);
check1d("max_pool1d", "stride", stride);
check1d("max_pool1d", "padding", padding);
check1d("max_pool1d", "dilation", dilation);
NoNamesGuard guard;
Tensor output, indices;
std::tie(output, indices) = at::max_pool2d_with_indices(
self.unsqueeze(-2),
{1, kernel_size[0]},
{1, stride[0]},
{0, padding[0]},
{1, dilation[0]},
ceil_mode);
output = output.squeeze(-2);
indices = indices.squeeze(-2);
guard.reset();
namedinference::propagate_names(output, self);
namedinference::propagate_names(indices, self);
return std::make_tuple(output, indices);
}
Tensor avg_pool1d(
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad) {
if (stride.empty()) {
stride = kernel_size;
}
checkDimRange("avg_pool1d", TensorArg(self, "self", 1), 2, 4 /* exclusive */);
check1d("avg_pool1d", "kernel_size", kernel_size);
check1d("avg_pool1d", "stride", stride);
check1d("avg_pool1d", "padding", padding);
auto output = at::avg_pool2d(
self.unsqueeze(-2),
{1, kernel_size[0]},
{1, stride[0]},
{0, padding[0]},
ceil_mode,
count_include_pad);
return output.squeeze(-2);
}
Tensor max_pool2d(
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode) {
if (self.is_quantized()) {
return at::quantized_max_pool2d(self, kernel_size, stride, padding,
dilation, ceil_mode);
}
if (self.is_mkldnn()) {
return at::mkldnn_max_pool2d(
self, kernel_size, stride, padding, dilation, ceil_mode);
}
#if defined(C10_MOBILE)
if(xnnpack::use_max_pool2d(self, kernel_size, padding, stride,
dilation, ceil_mode)) {
return xnnpack::max_pool2d(
self, kernel_size, padding, stride, dilation, ceil_mode);
}
#endif
auto output_and_indices = at::max_pool2d_with_indices(
self, kernel_size, stride, padding, dilation, ceil_mode);
return std::get<0>(output_and_indices);
}
Tensor max_pool3d(
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode) {
if (self.is_quantized()) {
return at::quantized_max_pool3d(self, kernel_size, stride, padding,
dilation, ceil_mode);
}
if (self.is_mkldnn()) {
return at::mkldnn_max_pool3d(
self, kernel_size, stride, padding, dilation, ceil_mode);
}
auto output_and_indices = at::max_pool3d_with_indices(
self, kernel_size, stride, padding, dilation, ceil_mode);
return std::get<0>(output_and_indices);
}
} // namespace native
} // namespace at