forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNNPACK.cpp
326 lines (276 loc) · 9.54 KB
/
NNPACK.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Config.h>
#include <c10/util/CallOnce.h>
#include <thread>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_nnpack_available_native.h>
#include <ATen/ops/_nnpack_spatial_convolution_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/zeros.h>
#endif
#if !AT_NNPACK_ENABLED()
namespace at {
namespace native {
at::Tensor _nnpack_spatial_convolution(
const Tensor& input,
const Tensor& weight, const c10::optional<Tensor>& bias_opt,
const IntArrayRef padding,
const IntArrayRef stride) {
throw std::runtime_error(
"nnpack_spatial_convolution: ATen not compiled with NNPACK support");
}
bool _nnpack_available() {
return false;
}
} // namespace native
} // namespace at
#else
#include <nnpack.h>
#include <caffe2/utils/threadpool/pthreadpool-cpp.h>
#include <ATen/native/ConvUtils.h>
#include <ATen/Parallel.h>
#include <c10/util/irange.h>
namespace at {
namespace native {
static bool init_nnpack() {
static c10::once_flag once_;
static bool nnpack_successfully_initialized_ = false;
c10::call_once(once_, []() {
const nnp_status nnpack_status = nnp_initialize();
nnpack_successfully_initialized_ = (nnp_status_success == nnpack_status);
if (nnpack_status != nnp_status_success) {
if (nnpack_status == nnp_status_out_of_memory) {
LOG(WARNING) << "Could not initialize NNPACK! Reason: Out of memory.";
} else if (nnpack_status == nnp_status_unsupported_hardware) {
LOG(WARNING) << "Could not initialize NNPACK! Reason: Unsupported hardware.";
} else {
LOG(WARNING) << "Could not initialize NNPACK! Reason: Unknown error!";
}
}
});
return nnpack_successfully_initialized_;
}
static pthreadpool_t nnpack_threadpool() {
#ifdef C10_MOBILE
return caffe2::pthreadpool_();
#else
static pthreadpool_t nnpack_threadpool_ = nullptr;
static bool called_nnpack_threadpool_ = false;
if (!called_nnpack_threadpool_) {
called_nnpack_threadpool_ = true;
#ifdef INTRA_OP_PARALLEL
const uint32_t threads = at::get_num_threads();
#else
const uint32_t threads = std::thread::hardware_concurrency();
#endif
nnpack_threadpool_ = pthreadpool_create(threads);
if (!nnpack_threadpool_) {
LOG(WARNING) << "Failed to initialize pthreadpool! Running NNPACK in single-threaded mode.";
}
}
return nnpack_threadpool_;
#endif
}
bool _nnpack_available() {
return init_nnpack();
}
namespace {
struct Workspace {
void* buffer = nullptr;
size_t size = 0;
void deallocate() {
if (buffer) {
// NOLINTNEXTLINE(cppcoreguidelines-no-malloc)
std::free(buffer);
buffer = nullptr;
}
}
void allocate() {
deallocate();
// NNPack has alignment requirements
constexpr size_t nnpack_memory_alignment_boundary = 64;
// Won't work on Windows, but NNPACK doesn't support Windows either
auto res = posix_memalign(&buffer, nnpack_memory_alignment_boundary, size);
if (res != 0) {
TORCH_CHECK(false, "posix_memalign failed:", strerror(errno), " (", errno, ")");
}
return;
}
~Workspace() {
deallocate();
}
};
} // namespace
// Make thread_local for safety in cases where we have multiple threads running
// Convs at once
static thread_local Workspace workspace;
Tensor _nnpack_spatial_convolution(
const Tensor& input,
const Tensor& weight, const c10::optional<Tensor>& bias_opt,
const IntArrayRef padding,
const IntArrayRef stride) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
at::Tensor output = at::empty(
conv_output_size(input.sizes(), weight.sizes(), padding, stride),
input.options());
// Our input Tensor must be in the form N,C,H,W
if (input.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D input Tensor N,C,H,W");
}
// Our weight Tensor must be in the form oC,iC,kH,kW
if (weight.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D weight Tensor oC,iC,kH,kW");
}
// Our output Tensor must be in the form N,oC,oH,oW
if (output.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D output Tensor N,oC,oH,oW");
}
// Some basic shape checking, not comprehensive
if (input.size(1) != weight.size(1)) {
std::stringstream err;
err << "Mismatch between number of input channels in input Tensor ("
<< input.size(1) << ") and weight Tensor (" << weight.size(1)
<< ") in NNPack convolutionOutput";
throw std::runtime_error(err.str());
}
if (weight.size(0) != output.size(1)) {
std::stringstream err;
err << "Mismatch between number of output channels in weight Tensor ("
<< weight.size(0) << ") and output Tensor (" << output.size(1)
<< ") in NNPack convolutionOutput";
throw std::runtime_error(err.str());
}
if (input.size(0) != output.size(0)) {
std::stringstream err;
err << "Mismatch between batch size in input Tensor (" << input.size(0)
<< ") and output Tensor (" << output.size(0)
<< ") in NNPack convolutionOutput";
throw std::runtime_error(err.str());
}
// All Tensors must be float Tensors
if (input.device().type() != kCPU || input.scalar_type() != kFloat ||
weight.device().type() != kCPU || weight.scalar_type() != kFloat ||
output.device().type() != kCPU || output.scalar_type() != kFloat ||
(bias.defined() && (bias.device().type() != kCPU || bias.scalar_type() != kFloat))) {
throw std::runtime_error(
"Mismatched Tensor types in NNPack convolutionOutput");
}
const auto algorithm = nnp_convolution_algorithm_auto;
const size_t input_channels = input.size(1);
const size_t output_channels = weight.size(0);
const struct nnp_size input_size = {
.width = (size_t)input.size(3),
.height = (size_t)input.size(2),
};
const struct nnp_padding input_padding = {
.top = (size_t)padding[0],
.right = (size_t)padding[1],
.bottom = (size_t)padding[0],
.left = (size_t)padding[1],
};
const struct nnp_size kernel_size = {
.width = (size_t)weight.size(3),
.height = (size_t)weight.size(2),
};
const struct nnp_size output_size = {
.width = (size_t)output.size(3),
.height = (size_t)output.size(2),
};
const nnp_size output_subsample = {
.width = static_cast<std::size_t>(stride[1]),
.height = static_cast<std::size_t>(stride[0]),
};
const auto input_ = input.contiguous();
const auto weight_ = weight.contiguous();
// If we don't have a defined bias Tensor, we need to create one filled with zeroes
const auto bias_ = bias.defined() ? bias.contiguous() : at::zeros({weight.size(0)}, input.options());
const auto compute = [&](const size_t batch_size) -> nnp_status {
if ((batch_size == 1) || (output_subsample.width != 1) || (output_subsample.height != 1)) {
const size_t input_size_per_batch = input_channels * input_size.width * input_size.height;
const size_t output_size_per_batch = output_channels * output_size.width * output_size.height;
for (const auto batch : c10::irange(0u, batch_size)) {
const nnp_status status = nnp_convolution_inference(
algorithm,
nnp_convolution_transform_strategy_compute,
input_channels,
output_channels,
input_size,
input_padding,
kernel_size,
output_subsample,
input_.data_ptr<float>() + batch * input_size_per_batch,
weight_.data_ptr<float>(),
bias_.data_ptr<float>(),
output.data_ptr<float>() + batch * output_size_per_batch,
workspace.buffer,
&workspace.size,
nnp_activation_identity,
nullptr,
nnpack_threadpool(),
nullptr );
if (nnp_status_success != status) {
return status;
}
}
return nnp_status_success;
}
else {
return nnp_convolution_output(
algorithm,
batch_size,
input_channels,
output_channels,
input_size,
input_padding,
kernel_size,
input_.data_ptr<float>(),
weight_.data_ptr<float>(),
bias_.data_ptr<float>(),
output.data_ptr<float>(),
workspace.buffer,
&workspace.size,
nnp_activation_identity,
nullptr,
nnpack_threadpool(),
nullptr );
}
};
const size_t batch_size = input.size(0);
auto size_and_allocate_ws = [&]() {
// Run a single pass to get the size of memory workspace buffer
const auto status = compute(batch_size);
if (status != nnp_status_success) {
throw std::runtime_error("NNPACK SpatialConvolution_updateOutput failed");
}
workspace.allocate();
};
// If no workspace created yet, allocate it
if (workspace.buffer == nullptr) {
size_and_allocate_ws();
}
// Try to run with the newly created, or existing workspace
auto status = compute(batch_size);
if (status == nnp_status_insufficient_buffer) {
// Need to reallocate the workspace
workspace.deallocate();
size_and_allocate_ws();
// Try one more time
status = compute(batch_size);
}
if (status != nnp_status_success) {
throw std::runtime_error("NNPACK SpatialConvolution_updateOutput failed");
}
return output;
}
} // namespace native
} // namespace at
#endif // AT_NNPACK_ENABLED