forked from sfujim/TD3
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval.py
77 lines (60 loc) · 2.32 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import torch
import gym
import pybullet_envs
import argparse
import os
import time
import utils
import TD3
import OurDDPG
import DDPG
# Runs policy for X episodes and returns average reward
def evaluate_policy(policy, eval_episodes=1, visualize=False):
avg_reward = 0.
for _ in xrange(eval_episodes):
obs = env.reset()
done = False
while not done:
action = policy.select_action(np.array(obs))
obs, reward, done, _ = env.step(action)
if visualize:
env.render(mode="human")
time.sleep(1./60.)
avg_reward += reward
avg_reward /= eval_episodes
print "---------------------------------------"
print "Evaluation over %d episodes: %f" % (eval_episodes, avg_reward)
print "---------------------------------------"
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy_name", default="TD3") # Policy name
parser.add_argument("--env_name", default="HalfCheetahBulletEnv-v0") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--filename", default="TD3_HalfCheetahBulletEnv-v0_0") # Model filename prefix e.g. "TD3_HalfCheetahBulletEnv-v0_0"
parser.add_argument("--eval_episodes", default=1, type=int) # Evaluation episodes
parser.add_argument("--visualize", action="store_true") # Visualize or not
args = parser.parse_args()
filename = args.filename
print "---------------------------------------"
print "Loading model from: %s" % (filename)
print "---------------------------------------"
env = gym.make(args.env_name)
if args.visualize:
env.render(mode="human")
# Set seeds
env.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
# Initialize policy
if args.policy_name == "TD3": policy = TD3.TD3(state_dim, action_dim, max_action)
elif args.policy_name == "OurDDPG": policy = OurDDPG.DDPG(state_dim, action_dim, max_action)
elif args.policy_name == "DDPG": policy = DDPG.DDPG(state_dim, action_dim, max_action)
# Load model
policy.load(filename, './pytorch_models/')
# Start evaluation
_ = evaluate_policy(policy, eval_episodes=args.eval_episodes, visualize=args.visualize)