-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper_finder.py
644 lines (534 loc) · 29.2 KB
/
paper_finder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import gzip
import locale
import logging
import pickle
import pickletools
import re
from collections import Counter
from copy import deepcopy
from functools import lru_cache
from itertools import takewhile
from pathlib import Path
import numpy as np
import numpy.typing as npt
import pandas as pd
from scipy.spatial import KDTree
from paperinfo import PaperInfo
from timer import Timer
locale.setlocale(locale.LC_ALL, 'pt_BR.UTF-8')
class PaperFinder:
def __init__(self, model_dir: Path = Path('model_data/')):
self.logger: logging.Logger = logging.getLogger(__name__)
self.abstracts: pd.DataFrame = None
# used to store all possible words in abstracts
# word: index
self.abstract_dict: dict[str, int] = None
# inverted abstract_dict
# index contains word
self.abstract_words: list[str] = None
self.keyword_weight: float = 1.5
self.model_dir: Path = model_dir.expanduser()
self.nearest_neighbours: KDTree = None
self.n_papers: int = 0 # number of PaperInfos
self.papers: list[PaperInfo] = None
self.paper_cluster_ids: npt.ArrayLike = None
self.papers_with_words: dict[str, list[int]] = None
self.paper_urls: pd.DataFrame = None
self.paper_vectors: npt.ArrayLike = None
self.similar_words: dict[str, list[tuple[float, str]]] = None
def _calc_title_score(
self,
title: str,
clean_title: str,
keywords: tuple[str, ...],
main_keywords_dict: dict[str, float],
similar_words_dict: dict[str, float],
big_kw: dict[str, float],
ngrams: set[str],
search_str: None | str = None,
) -> float:
paper_title_split = clean_title.split()
paper_title_counter = Counter(paper_title_split)
title_score = 0
# searches for whole keywords in title
title_score += sum(paper_title_counter[k] * v for k, v in main_keywords_dict.items() \
if k in paper_title_counter)
# if at least one keyword is in title
if title_score > 0:
# create various sequences of words in title
clean_title_ngrams = set()
for n in range(2, len(paper_title_split)+1):
clean_title_ngrams.update({w for w in zip(*(paper_title_split[i:] for i in range(n)))})
# give extra score depending on sequences of keywords in title
# keywords_ngrams_in_title = [len(n) for n in clean_title_ngrams if n in ngrams]
# title_score += self.keyword_weight * sum(keywords_ngrams_in_title)
keywords_ngrams_in_title = sum(1 for n in clean_title_ngrams if n in ngrams)
title_score += self.keyword_weight * keywords_ngrams_in_title
main_keywords_in_title = sum(1 for w in keywords if w in paper_title_counter)
if main_keywords_in_title == len(keywords):
# gives extra score since all main keywords are in title
title_score += self.keyword_weight * len(keywords)
if len(paper_title_split) == len(keywords):
# gives extra score since the keywords are the title
title_score += self.keyword_weight * len(keywords) * 5
if search_str is not None and len(search_str) > 0 and search_str in title:
# gives extra score since the search string is in the title
title_score += len(title) - (len(title) - len(search_str))
# searches for words similar to keywords in title
title_score += sum(paper_title_counter[k] * v for k, v in similar_words_dict.items() \
if k in paper_title_counter)
# searches for keyword as part of word in title, weighted by how much of w is made of k
title_score += sum(paper_title_counter[w] * v * len(k)/len(w) \
for k, v in big_kw.items() for w in paper_title_counter if k in w and len(k) < len(w))
return title_score
def _calc_abstract_score(
self,
i: int,
keywords: tuple[str, ...],
main_keywords_dict: dict[str, float],
similar_words_dict: dict[str, float],
) -> float:
abstract_score = 0
# searches in title and also abstract using weights given during training
abstract_score += sum(self.papers[i].abstract_freq[self.abstract_dict[k]] * v \
for k, v in main_keywords_dict.items() \
if self.abstract_dict[k] in self.papers[i].abstract_freq)
if abstract_score > 0:
main_keywords_in_abstract = sum(
1 for w in keywords if w in self.abstract_dict and
self.abstract_dict[w] in self.papers[i].abstract_freq)
if main_keywords_in_abstract == len(keywords):
# gives extra score since all main keywords are in abstract
abstract_score += self.keyword_weight * len(keywords)
abstract_score += sum(self.papers[i].abstract_freq[self.abstract_dict[k]] * v \
for k, v in similar_words_dict.items() \
if self.abstract_dict[k] in self.papers[i].abstract_freq)
return abstract_score
def _calc_score(
self,
i: int,
keywords: tuple[str, ...],
main_keywords_dict: dict[str, float],
similar_words_dict: dict[str, float],
big_kw: dict[str, float],
ngrams: set[str],
search_str: None | str = None,
) -> float:
title_score = self._calc_title_score(
self.papers[i].title,
self.papers[i].clean_title,
keywords,
main_keywords_dict,
similar_words_dict,
big_kw,
ngrams,
search_str,
)
if '_' in self.papers[i].clean_title:
title_without_underline_score = self._calc_title_score(
self.papers[i].title.replace('-', ' ').replace('_', ' '),
self.papers[i].clean_title.replace('_', ' '),
keywords,
main_keywords_dict,
similar_words_dict,
big_kw,
ngrams,
search_str,
)
else:
title_without_underline_score = 0
abstract_score = self._calc_abstract_score(i, keywords, main_keywords_dict, similar_words_dict)
return max(title_score, title_without_underline_score) + abstract_score
def _calc_regex_score(
self,
i: int,
regex: re.Pattern,
) -> float:
# give 3 points for each occurrence in title, 1 point for each occurrence in abstract
return sum(3 for _ in regex.finditer(self.papers[i].title)) + \
sum(1 for _ in regex.finditer(self.abstracts.iloc[i].abstract))
@lru_cache
def _find_by_conference_and_year(
self,
conferences: None | tuple[str, ...] = None,
years: None | tuple[str, ...] = None,
count: int = 0,
) -> tuple[tuple[int, ...], int]:
valid_indices = range(self.n_papers)
if conferences is not None and len(conferences) > 0:
# handle conferences to discard first
discard_conferences = {c[1:] for c in conferences if c.startswith('-')}
if len(discard_conferences) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].conference not in discard_conferences)
keep_conferences = {c for c in conferences if not c.startswith('-')}
if len(keep_conferences) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].conference in keep_conferences)
if years is not None and len(years) > 0:
# handle conferences to discard first
discard_years = {int(c[1:]) for c in years if c.startswith('-')}
if len(discard_years) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].year not in discard_years)
keep_years = {int(c) for c in years if c.isnumeric()}
if len(keep_years) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].year in keep_years)
remaining_years = set(years) - {c for c in years if c.startswith('-') or c.isnumeric()}
if len(remaining_years) > 0:
for y in remaining_years:
if y.startswith('<='):
valid_indices = (i for i in valid_indices if self.papers[i].year <= int(y[2:]))
elif y.startswith('>='):
valid_indices = (i for i in valid_indices if self.papers[i].year >= int(y[2:]))
elif y.startswith('<'):
valid_indices = (i for i in valid_indices if self.papers[i].year < int(y[1:]))
elif y.startswith('>'):
valid_indices = (i for i in valid_indices if self.papers[i].year > int(y[1:]))
elif y.startswith('=='):
valid_indices = (i for i in valid_indices if self.papers[i].year == int(y[2:]))
elif y.startswith('='):
valid_indices = (i for i in valid_indices if self.papers[i].year == int(y[1:]))
elif y.startswith('!='):
valid_indices = (i for i in valid_indices if self.papers[i].year != int(y[2:]))
elif y.startswith('!'):
valid_indices = (i for i in valid_indices if self.papers[i].year != int(y[1:]))
else:
self.logger.warning(f'Invalid year filter: {y}')
# doing this because for some reason the generator is not working correctly in the loop
valid_indices = list(valid_indices)
if not isinstance(valid_indices, list):
valid_indices = list(valid_indices)
if len(valid_indices) == 0:
return (), 0
result = self.abstracts.iloc[valid_indices].sort_values(by=['year', 'conference'], ascending=[False, True]).index
if count <= 0:
count = len(result)
return tuple(result), len(result)
@lru_cache
def _find_by_keywords(
self,
keywords: tuple[str, ...],
count: int = 0,
similar: int = 5,
conferences: None | tuple[str, ...] = None,
years: None | tuple[str, ...] = None,
exclude_keywords: None | tuple[str, ...] = None,
search_str: None | str = None,
) -> tuple[tuple[int, ...], int, None | tuple[float, ...]]:
if count <= 0:
count = self.n_papers
if len(keywords) == 0:
return (), 0, None
keywords = list(k.lower() for k in keywords)
self.logger.info(f'Keywords to search for: {keywords}')
keywords_dict = {w: self.keyword_weight for w in keywords if w in self.abstract_dict}
main_keywords_dict = deepcopy(keywords_dict)
if similar > 0:
for word in keywords:
if len(word) > 2:
similar_words = self.get_most_similar_words(word, similar)
if similar_words is not None:
for v, w in similar_words:
if len(w) > 2 and w in self.abstract_dict and \
((w not in keywords_dict) or \
(v > keywords_dict[w])):
keywords_dict[w] = v
if self.logger.level < logging.INFO:
words_weights = {k: f'{v:.3f}' for k,
v in keywords_dict.items()}
self.logger.info(
f'Using {len(keywords_dict) - len(keywords)} aditional similar words:\n'
f'{words_weights}')
else:
self.logger.info(
f'Using {len(keywords_dict) - len(keywords)} aditional similar words:\n'
f'{[k for k, _ in keywords_dict.items()]}')
similar_words_dict = {k: v for k, v in keywords_dict.items() if k not in main_keywords_dict}
if exclude_keywords is not None:
exclude_keywords_index = {self.abstract_dict[k] for k in exclude_keywords if k in self.abstract_dict}
# discard papers that does not fit our search
valid_indices = range(self.n_papers)
with Timer(name='Excluding papers by keywords, conference and/or year'):
if conferences is not None and len(conferences) > 0:
# handle conferences to discard first
discard_conferences = {c[1:] for c in conferences if c.startswith('-')}
if len(discard_conferences) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].conference not in discard_conferences)
keep_conferences = {c for c in conferences if not c.startswith('-')}
if len(keep_conferences) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].conference in keep_conferences)
if years is not None and len(years) > 0:
# handle conferences to discard first
discard_years = {int(c[1:]) for c in years if c.startswith('-')}
if len(discard_years) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].year not in discard_years)
keep_years = {int(c) for c in years if c.isnumeric()}
if len(keep_years) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].year in keep_years)
remaining_years = set(years) - {c for c in years if c.startswith('-') or c.isnumeric()}
if len(remaining_years) > 0:
for y in remaining_years:
if y.startswith('<='):
valid_indices = (i for i in valid_indices if self.papers[i].year <= int(y[2:]))
elif y.startswith('>='):
valid_indices = (i for i in valid_indices if self.papers[i].year >= int(y[2:]))
elif y.startswith('<'):
valid_indices = (i for i in valid_indices if self.papers[i].year < int(y[1:]))
elif y.startswith('>'):
valid_indices = (i for i in valid_indices if self.papers[i].year > int(y[1:]))
elif y.startswith('=='):
valid_indices = (i for i in valid_indices if self.papers[i].year == int(y[2:]))
elif y.startswith('='):
valid_indices = (i for i in valid_indices if self.papers[i].year == int(y[1:]))
elif y.startswith('!='):
valid_indices = (i for i in valid_indices if self.papers[i].year != int(y[2:]))
elif y.startswith('!'):
valid_indices = (i for i in valid_indices if self.papers[i].year != int(y[1:]))
else:
self.logger.warning(f'Invalid year filter: {y}')
# doing this because for some reason the generator is not working correctly in the loop
valid_indices = list(valid_indices)
# if contains keyword to exclude, discard it
if exclude_keywords is not None and len(exclude_keywords_index) > 0:
valid_indices = (i for i in valid_indices \
if all((w not in self.papers[i].abstract_freq for w in exclude_keywords_index)))
with Timer(name='Keeping only papers with keywords or similar words'):
# keep only papers that contains the keywords and similar words
valid_indices_by_kw = set()
for kw in keywords_dict:
if kw in self.papers_with_words:
valid_indices_by_kw = valid_indices_by_kw.union(set(self.papers_with_words[kw]))
with Timer(name='Keeping also papers with superstrings of the keywords'):
# consider also words that are superstrings of the main keywords, excluding small keywords
big_kw = {k: v for k, v in main_keywords_dict.items() if len(k) > 2}
kw_as_substr = {w for kw in big_kw for w in self.papers_with_words if kw in w and len(kw) < len(w)}
for kw in kw_as_substr:
valid_indices_by_kw = valid_indices_by_kw.union(set(self.papers_with_words[kw]))
valid_indices = (i for i in valid_indices if i in valid_indices_by_kw)
with Timer(name='Creating ngrams'):
# create various sequences of keywords to check on clean title
ngrams = set()
for n in range(2, len(keywords)+1):
ngrams.update({k for k in zip(*(keywords[i:] for i in range(n)))})
scores = np.zeros(self.n_papers)
with Timer(name="Calculating papers' scores"):
valid_indices = list(valid_indices)
np.put(scores, valid_indices, list(
self._calc_score(i, keywords, main_keywords_dict, similar_words_dict, big_kw, ngrams, search_str) for i in valid_indices))
sorted_indices = np.argsort(-scores)
result_indices = tuple(takewhile(lambda x: scores[x] > 0, sorted_indices))
result_len = len(result_indices)
scores = tuple(scores[i] for i in result_indices)
self.logger.info(f'{result_len:n} papers have occurrences of the keywords.')
return result_indices, result_len, scores
@lru_cache
def _find_by_regex(
self,
regex: str,
conferences: None | tuple[str, ...] = None,
years: None | tuple[str, ...] = None,
exclude_keywords: None | tuple[str, ...] = None,
count: int = 0,
) -> tuple[tuple[int, ...], int, None | tuple[float, ...]]:
if count <= 0:
count = self.n_papers
# discard papers that does not fit our search
valid_indices = range(self.n_papers)
filtered = False
if exclude_keywords is not None:
exclude_keywords_index = {self.abstract_dict[k] for k in exclude_keywords if k in self.abstract_dict}
with Timer(name='Excluding papers by keywords, conference and/or year'):
if conferences is not None and len(conferences) > 0:
filtered = True
# handle conferences to discard first
discard_conferences = {c[1:] for c in conferences if c.startswith('-')}
if len(discard_conferences) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].conference not in discard_conferences)
keep_conferences = {c for c in conferences if not c.startswith('-')}
if len(keep_conferences) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].conference in keep_conferences)
if years is not None and len(years) > 0:
filtered = True
# handle conferences to discard first
discard_years = {int(c[1:]) for c in years if c.startswith('-')}
if len(discard_years) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].year not in discard_years)
keep_years = {int(c) for c in years if c.isnumeric()}
if len(keep_years) > 0:
valid_indices = (i for i in valid_indices if self.papers[i].year in keep_years)
remaining_years = set(years) - {c for c in years if c.startswith('-') or c.isnumeric()}
if len(remaining_years) > 0:
for y in remaining_years:
if y.startswith('<='):
valid_indices = (i for i in valid_indices if self.papers[i].year <= int(y[2:]))
elif y.startswith('>='):
valid_indices = (i for i in valid_indices if self.papers[i].year >= int(y[2:]))
elif y.startswith('<'):
valid_indices = (i for i in valid_indices if self.papers[i].year < int(y[1:]))
elif y.startswith('>'):
valid_indices = (i for i in valid_indices if self.papers[i].year > int(y[1:]))
elif y.startswith('=='):
valid_indices = (i for i in valid_indices if self.papers[i].year == int(y[2:]))
elif y.startswith('='):
valid_indices = (i for i in valid_indices if self.papers[i].year == int(y[1:]))
elif y.startswith('!='):
valid_indices = (i for i in valid_indices if self.papers[i].year != int(y[2:]))
elif y.startswith('!'):
valid_indices = (i for i in valid_indices if self.papers[i].year != int(y[1:]))
else:
self.logger.warning(f'Invalid year filter: {y}')
# doing this because for some reason the generator is not working correctly in the loop
valid_indices = list(valid_indices)
# if contains keyword to exclude, discard it
if exclude_keywords is not None and len(exclude_keywords_index) > 0:
filtered = True
valid_indices = (i for i in valid_indices \
if all((w not in self.papers[i].abstract_freq for w in exclude_keywords_index)))
with Timer(name='Filtering papers by regex'):
if filtered:
valid_indices_set = set(valid_indices)
filtered_abstracts = self.abstracts[self.abstracts.index.isin(valid_indices_set)]
valid_indices = filtered_abstracts[filtered_abstracts.title.str.contains(regex, case=False, regex=True) |
filtered_abstracts.abstract.str.contains(regex, case=False, regex=True)].index
else:
valid_indices = self.abstracts[self.abstracts.title.str.contains(regex, case=False, regex=True) |
self.abstracts.abstract.str.contains(regex, case=False, regex=True)].index
compiled_regex = re.compile(regex, re.IGNORECASE)
scores = np.zeros(self.n_papers)
with Timer(name="Calculating papers' scores"):
np.put(scores, valid_indices, list(
self._calc_regex_score(i, compiled_regex) for i in valid_indices))
sorted_indices = np.argsort(-scores)
result_indices = tuple(takewhile(lambda x: scores[x] > 0, sorted_indices))
result_len = len(result_indices)
scores = tuple(scores[i] for i in result_indices)
self.logger.info(f'{result_len:n} papers have occurrences of the keywords.')
return result_indices, result_len, scores
def _load_object(self, name: str | Path) -> object:
with Timer(name=f'Loading {name}'):
with gzip.open(f'{name}.pkl.gz', 'rb') as f:
return pickle.load(f)
def _save_object(self, name: str | Path, obj: object) -> None:
with gzip.open(f'{name}.pkl.gz', 'wb') as f:
# pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
pickled = pickle.dumps(obj)
optimized_pickled = pickletools.optimize(pickled)
f.write(optimized_pickled)
def find_by_conference_and_year(
self,
conferences: None | tuple[str, ...] = None,
years: None | tuple[str, ...] = None,
count: int = 0,
offset: int = 0,
) -> tuple[list[int], int]:
result, len_result = self._find_by_conference_and_year(conferences, years, count)
return result[offset:offset+count], len_result
def find_by_keywords(
self,
keywords: tuple[str, ...],
count: int = 0,
similar: int = 5,
conferences: None | tuple[str, ...] = None,
years: None | tuple[str, ...] = None,
exclude_keywords: tuple[str, ...] = None,
offset: int = 0,
search_str: None | str = None,
) -> tuple[list[tuple[int, float]], int]:
result, result_len, scores = self._find_by_keywords(
keywords, count, similar, conferences, years, exclude_keywords, search_str)
if offset < result_len:
if offset + count < result_len:
result = list((idx, score) for idx, score in zip(result[offset:offset+count], scores[offset:offset+count]))
else:
result = list((idx, score) for idx, score in zip(result[offset:], scores[offset:]))
else:
result = []
return result, result_len
def find_by_regex(
self,
regex: str,
conferences: None | tuple[str, ...] = None,
years: None | tuple[str, ...] = None,
exclude_keywords: tuple[str, ...] = None,
count: int = 0,
offset: int = 0,
) -> tuple[list[tuple[int, float]], int]:
result, result_len, scores = self._find_by_regex(regex, conferences, years, exclude_keywords, count)
if offset < result_len:
if offset + count < result_len:
result = list((idx, score) for idx, score in zip(result[offset:offset+count], scores[offset:offset+count]))
else:
result = list((idx, score) for idx, score in zip(result[offset:], scores[offset:]))
else:
result = []
return result, result_len
def find_by_paper_title(self, title: str) -> int:
title = title.lower()
result = list(i for i in range(self.n_papers) if title in self.papers[i].title.lower())
if len(result) > 0:
return result[0]
return -1
def find_similar_papers(self, paper_id: int, count: int = 5, offset: int = 0) -> list[tuple[int, float]]:
target_vector = self.paper_vectors[paper_id]
distances, indices = self.nearest_neighbours.query(
target_vector, count + offset + 1)
results = np.vstack((indices, distances))
# skip 1st result since it is same paper used in search
results = list((int(results[0, i]), results[1, i]) for i in range(offset+1, indices.shape[0]))
return results
def get_most_similar_words(self, target_word: str, count: int = 5) -> list[tuple[float, str]]:
if self.similar_words is not None and target_word in self.similar_words:
return self.similar_words[target_word][:count]
return []
def load_abstracts(self, filename: str) -> None:
extensions = Path(filename).suffixes
if '.csv' in extensions:
self.abstracts: pd.DataFrame = pd.read_csv(filename, sep='|')
elif '.feather' in extensions:
self.abstracts: pd.DataFrame = pd.read_feather(filename)
elif '.json' in extensions:
self.abstracts: pd.DataFrame = pd.read_json(filename)
def remove_quotes(text: str) -> str:
if (text.startswith('"') and text.endswith('"')) or (text.startswith("'") and text.endswith("'")):
return text[1:-1]
return text
self.abstracts['abstract'] = self.abstracts['abstract'].apply(remove_quotes)
def load_urls(self, filename: str) -> None:
extensions = Path(filename).suffixes
if '.csv' in extensions:
self.paper_urls: pd.DataFrame = pd.read_csv(filename, sep='|')
elif '.feather' in extensions:
self.paper_urls: pd.DataFrame = pd.read_feather(filename)
elif '.json' in extensions:
self.paper_urls: pd.DataFrame = pd.read_json(filename)
self.paper_urls.fillna('', inplace=True)
def load_paper_vectors(
self,
load_abstract_words: bool = False,
load_cluster_ids: bool = False,
load_similar_dict: bool = False,
suffix: str = ''
) -> None:
self.abstract_dict: dict[str, int] = \
self._load_object(self.model_dir / f'abstract_dict{suffix}')
self.paper_vectors: npt.ArrayLike = \
self._load_object(self.model_dir / f'paper_vectors{suffix}')
self.papers_with_words: dict[str, list[int]] = \
self._load_object(self.model_dir / f'papers_with_words{suffix}')
self.nearest_neighbours: KDTree = \
self._load_object(self.model_dir / f'nearest_neighbours{suffix}')
self.papers: list[PaperInfo] = \
self._load_object(self.model_dir / f'paper_info{suffix}')
abstract_freq: list[dict[int, float]] = \
self._load_object(self.model_dir / f'paper_info_freq{suffix}')
for p, f in zip(self.papers, abstract_freq):
p.abstract_freq = f
if load_abstract_words:
self.abstract_words: list[str] = \
self._load_object(self.model_dir / f'abstract_words{suffix}')
if load_cluster_ids:
self.paper_cluster_ids: npt.ArrayLike = \
self._load_object(self.model_dir / f'cluster_ids{suffix}')
if load_similar_dict:
self.similar_words: dict[str, list[tuple[float, str]]] = \
self._load_object(self.model_dir / 'similar_dictionary')
self.n_papers: int = min(self.paper_vectors.shape[0], len(self.papers))
self.logger.info(f'Loaded {self.n_papers:n} papers info.')