-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
43 lines (33 loc) · 1.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras import datasets, layers, models
(training_images, training_labels), (testing_images, testing_labels) = datasets.cifar10.load_data()
training_images, testing_images = training_images / 255, testing_images / 255
class_names = ['Plane', 'Car', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']
for i in range(16):
plt.subplot(4, 4, i+1)
plt.xticks([])
plt.yticks([])
plt.imshow(training_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[training_labels[i][0]])
# plt.show()
training_images = training_images
training_labels = training_labels
testing_images = testing_images[:4000]
testing_labels = testing_labels[:4000]
model = models.Sequential()
model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(32,32,3)))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(64, (3,3,), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(64, (3,3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(training_images, training_labels, epochs=10, validation_data=(testing_images, testing_labels))
loss, accuracy = model.evaluate(testing_images, testing_labels)
print(f'Loss: {loss}')
print(f'Accuracy: {accuracy*100}%')
model.save('image_classifier.model')