-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpy_BathySfM.py
895 lines (765 loc) · 39.9 KB
/
py_BathySfM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#------------------------------------------------------------------------------
__author__ = 'James T. Dietrich'
__contact__ = '[email protected]'
__copyright__ = '(c) James Dietrich 2019'
__license__ = 'MIT'
__date__ = '28 APRIL 2020'
__version__ = '4.5'
__status__ = "minor release"
__url__ = "https://github.com/geojames/pyBathySfM"
"""
Name: py_BathySfM_gui.py
Compatibility: Python 3.7
Description: This program performs a per-camera refration correction on a
Structure-from-Motion point cloud. Additional documnetation,
sample data, and a tutorial are availible from the GitHub
address below.
URL: https://github.com/geojames/pyBathySfM
Requires: PyQT5, numpy, pandas, sympy, matplotlib
Dev ToDo: 1) speed up camera geometry calculations
AUTHOR: James T. Dietrich
ORGANIZATION: University of Northern Iowa
Contact: [email protected]
Copyright: (c) James Dietrich 2019
Licence: MIT
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
# TO RUN - from the command line (or editor)
# run py_bathySfM.py to load the GUI
#------------------------------------------------------------------------------
#pyqt import
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtWidgets import QMessageBox, QDialog, QApplication
# other imports
import os
import sys
import numpy as np
import pandas as pd
from scipy.spatial.transform import Rotation as R
import sympy.geometry as spg
import matplotlib.path as mplPath
from datetime import datetime
# MAIN PROGRAM HELPER FUNCTIONS (run on OK button)
def footprints(cam, sensor, base_elev, gui):
"""
This function calculates the instantaneous field of view (IFOV) for
the camera(s) that are passed.\n
Vars:\n
\t cam = pandas dataframe (n x ~6, fields: x,y,z,yaw,pitch,roll)\n
\t sensor = pandas dataframe (1 x 3, fields: focal, sensor_x, sensor_y):
\t focal length (mm), sensor x dim (mm), sensor y dim (mm)\n
\t base_elev = average elevation of your site (meters, or in the same
\t measure as your coordinates)\n
Creates approx. coordinates for sensor
corners (north-oriented and zero pitch) at the camera's x,y,z. Rotates
the sensor coords in 3D space to the camera's pitch and yaw angles (roll
angles are ignored for now) and projects corner rays through the camera
x,y,z to a approx ground plane. The intersection of the rays with the
ground are the corners of the photo footprint.\n
*** Photos that have picth angles that cause the horizon to be visable will
cause the UL and UR path coordniates to wrong. These cameras are
disreguarded and the footprint will be set to NaN in the output.***\n
RETURNS: footprints = Pandas dataframe (n x 1) of Matplotlib Path objects()
"""
#qt progress bar
gui.top_progBar.setValue(0)
gui.top_progBar.setMaximum(cam.shape[0])
# Setup DF to house camera footprint polygons
footprints = pd.DataFrame(np.zeros((cam.shape[0],1)), columns=['fov'])
# debug - blank 3d array for inter_points
# itp_f = '//thor.ad.uni.edu/users/jdietric/Documents/Python Scripts/py_sfm_depth/WhiteR_2016/itp.npy'
# itp = np.zeros((cam.shape[0],4,2))
# convert sensor dimensions to meters, divide x/y for corner coord calc
f = sensor.focal[0] * 0.001
sx = sensor.sensor_x[0] / 2 * 0.001
sy = sensor.sensor_y[0] / 2 * 0.001
# calculate the critical pitch (in degrees) where the horizon will be
# visible with the horizon viable, the ray projections go backward
# and produce erroneous IFOV polygons (90 - 0.5*vert_fov)
crit_pitch = 90 - np.rad2deg(np.arctan(sy / f))
# User Feedback
print("Proccesing Camera IFOVs (%i total)..." %(cam.shape[0]))
sys.stdout.flush()
# for each camera...
for idx, row in cam.iterrows():
# check is the camera pitch is over the critical value
if row.pitch < crit_pitch:
# sensor corners, north-oriented and zero pitch(down look)
# [LL,UL,UR,LR,frame center]
# X & Y flipped for Euler rotation frame (switched back latter)
corner_p = np.array([[-f,-sx,-sy],
[-f,-sx,sy],
[-f,sx,sy],
[-f,sx,-sy],
[-f,0,0]])
# cam x,y,z for adding to rotation
cam_pt = np.array([row.x, row.y, row.z])
# get pitch and yaw from the camera, in degrees
# translate to fit euler frame
pitch_e = 90.0-row.pitch
roll_e = -row.roll
if 0 <= row.yaw <= 180.0:
yaw_e = row.yaw
else:
yaw_e = -1* (360.0 - row.yaw)
# create Euler rotation object form y,p,r,
# apply to the sensor corner points
# add the camera point coords to translate
r_e = R.from_euler('ZYX',[[yaw_e,pitch_e,roll_e]],degrees=True)
p_eC = r_e.apply(corner_p) + [cam_pt[1],cam_pt[0],cam_pt[2]]
reord = [1,0,2]
s_pts = p_eC[:,reord]
# GEOMETRY
# Set Sympy 3D point for the camera and a 3D plane for intersection
cam_sp = spg.Point3D(row.x, row.y, row.z)
plane = spg.Plane(spg.Point3D(row.x, row.y, base_elev),
normal_vector=(0,0,1))
# blank array for footprint intersection coords
inter_points = np.zeros((corner_p.shape[0]-1,2))
# for each sensor corner point
idx_b = 0
for pt in np.asarray(s_pts[0:4]):
# create a Sympy 3D point and create a Sympy 3D ray from
# corner point through camera point
pt_sp = spg.Point3D(pt[0],pt[1],pt[2])
ray = spg.Ray3D(pt_sp,cam_sp)
# calculate the intersection of the ray with the plane
inter_pt = plane.intersection(ray)
# Extract out the X,Y coords from the intersection point to
# ground intersect points will be in this order (LL,UL,UR,LR)
inter_points[idx_b,0] = inter_pt[0].x.evalf()
inter_points[idx_b,1] = inter_pt[0].y.evalf()
idx_b += 1
# if crit_pitch is exceeded set inter_points to NaN
else:
inter_points = np.full((4,2),np.nan)
# append inter_points to footprints as a matplotlib path object
footprints.fov[idx] = mplPath.Path(inter_points)
#debug - save inter_points
# itp[idx,:,:] = inter_points
# User feedback and progress bar
if (idx+1) % 10 == 0:
print("%i cameras processed..." %(idx+1))
gui.top_progBar.setValue(idx)
gui.topProg_Lbl.setText("Calculating Camera Footprints - %i of %i"%(idx+1,cam.shape[0]))
QApplication.processEvents()
#sys.stdout.flush()
#debug - save inter_points
#np.save(itp_f,itp)
return footprints
# END - footprints
def visibility(cam, footprints, targets):
"""
This function tests is the target points (x,y only) are "visible" (i.e.
within the photo footprints) and calculates the "r" angle for the refraction
correction\n
Vars:\n
\t cam = Pandas dataframe (n x ~6, fields: x,y,z,yaw,pitch,roll)\n
\t footprints = Pandas dataframe (n x 1) of Matplotlib Path objects\n
\t targets = Pandas dataframe (n x ~3, fields: x,y,sfm_z...)\n
RETURNS: r_filt = numpy array (n_points x n_cams) of filtered "r" angles.\n
Points that are not visible to a camera will have a NaN "r" angle.
"""
# Setup boolean array for visibility
vis = np.zeros((targets.shape[0],cam.shape[0]))
# for each path object in footprints, check is the points in targets are
# within the path polygon. path.contains_points returns boolean.
# the results are accumulated in the vis array.
for idx in range(footprints.shape[0]):
path = footprints.fov[idx]
vis[:,idx] = path.contains_points(np.array([targets.x.values, targets.y.values]).T)
# calculate the coord. deltas between the cameras and the target
dx = np.atleast_2d(cam.x.values) - np.atleast_2d(targets.x.values).T
dy = np.atleast_2d(cam.y.values) - np.atleast_2d(targets.y.values).T
dz = np.atleast_2d(cam.z.values) - np.atleast_2d(targets.sfm_z).T
# calc xy distance (d)
d = np.sqrt((dx)**2+(dy)**2)
# calc inclination angle (r) from targets to cams
r = np.rad2deg(np.arctan(d/dz))
r_filt = r * vis
r_filt[r_filt == 0] = np.nan
# If camera quality stats exist in the camera table, broadcast the camera
# quality values into into a point x cams table and filter based on the
# visability matrix calc'd above
if 'quality' in cam.columns:
qual = cam.quality.values
qual_mat = np.repeat(np.atleast_2d(qual),targets.shape[0],axis=0)
qual_vis = qual_mat * vis
qual_vis[qual_vis==0] = np.nan
else:
qual_vis = np.zeros((targets.shape[0],cam.shape[0]))
qual_vis[:] = np.nan
return r_filt, d, qual_vis
def correction(r, target, r_index,extras):
"""Performs the per camera refraction correction on a target point.
Refer to the documentation for the specifics.
extras = [smAng, stats, camStats, weight]"""
# convert r array to radians for trig calculations
ang_r = np.radians(r)
# calculate the refraction angle i
ang_i = np.arcsin(1.0/r_index * np.sin(ang_r))
# calculate the apparent depth from the water surface elev. and the
# target SfM elevation
target['h_a'] = target.w_surf - target.sfm_z
# calculate the distance from the point to the air/water interface
x_dist = np.array([target.h_a.values]).T * np.tan(ang_r)
# calculate the corrected (actual) depth
h = x_dist / np.tan(ang_i)
# subtract the corrected depth from the water surface elevation to get the
# corrected elevation
cor_elev = np.array([target.w_surf]).T - h
# append the mean values for the actual depth and corrected elevation to
# the target data frame
target['h_avg'] = np.nanmean(h, axis = 1)
target['corElev_avg'] = np.nanmean(cor_elev, axis = 1)
if extras[0]:
# calc small angle approximation
target['smAng_h'] = target['h_a'] * 1.34
target['smAng_elev'] = target.w_surf - target['smAng_h']
if extras[1]:
# some extra statistics for playing around (option from GUI)
target['h_std'] = np.nanstd(h, axis = 1)
target['h_med'] = np.nanmedian(h, axis = 1)
target['h_min'] = np.nanmin(h, axis = 1)
target['h_max'] = np.nanmax(h, axis = 1)
target['h_per15'] = np.nanpercentile(h, 15,axis = 1)
target['h_per25'] = np.nanpercentile(h, 25,axis = 1)
target['h_per55'] = np.nanpercentile(h, 55,axis = 1)
target['h_per60'] = np.nanpercentile(h, 60,axis = 1)
target['h_per75'] = np.nanpercentile(h, 75,axis = 1)
target['h_per80'] = np.nanpercentile(h, 80,axis = 1)
target['h_per90'] = np.nanpercentile(h, 90,axis = 1)
target['h_per95'] = np.nanpercentile(h, 95,axis = 1)
target['h_iqr'] = target['h_per75'] - target['h_per25']
target['h_lif'] = target['h_per25'] - (1.5 * target['h_iqr'])
target['h_uif'] = target['h_per75'] + (1.5 * target['h_iqr'])
target['h_lof'] = target['h_per25'] - (3 * target['h_iqr'])
target['h_uof'] = target['h_per75'] + (3 * target['h_iqr'])
# l_whisk = np.repeat(np.atleast_2d(target['h_lif']).T,188,axis=1)
# u_whisk = np.repeat(np.atleast_2d(target['h_uif']).T,188,axis=1)
# target['u_whisk'] = np.nanmax(np.ma.masked_less_equal(h,u_whisk).data,axis=1)
# target['l_whisk'] = np.nanmin(np.ma.masked_greater_equal(h,l_whisk).data,axis=1)
# mild_out = np.zeros_like(h)
# ext_out = np.zeros_like(h)
# mild_out[h < np.atleast_2d(target['h_lif']).T] = 1
# mild_out[h > np.atleast_2d(target['h_uif']).T] = 1
# ext_out[h < np.atleast_2d(target['h_lof']).T] = 1
# ext_out[h > np.atleast_2d(target['h_uof']).T] = 1
# target['h_mildout'] = np.nansum(mild_out, axis = 1)
# target['h_extout'] = np.nansum(ext_out, axis = 1)
# return the target dataframe
return target, ang_r, x_dist, h, cor_elev
# END def correction
def pointFilter(tar,h,r,d,extras):
# tar = target out table from F(correction)
# h = full corrected depth table from F(correction)
# r = camera angles from F(visibility)
# d = camera distances from F(visibility)
max_ang = extras[4]
max_dist = extras[5]
h_filt = h
h_filt[r > max_ang] = np.nan
h_filt[d > max_dist] = np.nan
tar['h_filt'] = np.nanmean(h_filt, axis = 1)
cor_elev_filt = np.array([tar.w_surf]).T - h_filt
tar['corElev_avg_filt'] = np.nanmean(cor_elev_filt, axis = 1)
if extras[1]:
# some extra statistics for playing around (option from GUI)
tar['h_filt_std'] = np.nanstd(h_filt, axis = 1)
tar['h_filt_med'] = np.nanmedian(h_filt, axis = 1)
tar['h_filt_min'] = np.nanmin(h_filt, axis = 1)
tar['h_filt_max'] = np.nanmax(h_filt, axis = 1)
tar['h_filt_per15'] = np.nanpercentile(h_filt, 15,axis = 1)
tar['h_filt_per25'] = np.nanpercentile(h_filt, 25,axis = 1)
tar['h_filt_per55'] = np.nanpercentile(h_filt, 55,axis = 1)
tar['h_filt_per60'] = np.nanpercentile(h_filt, 60,axis = 1)
tar['h_filt_per75'] = np.nanpercentile(h_filt, 75,axis = 1)
tar['h_filt_per80'] = np.nanpercentile(h_filt, 80,axis = 1)
tar['h_filt_per90'] = np.nanpercentile(h_filt, 90,axis = 1)
tar['h_filt_per95'] = np.nanpercentile(h_filt, 95,axis = 1)
tar['h_filt_iqr'] = tar['h_filt_per75'] - tar['h_filt_per25']
tar['h_filt_lif'] = tar['h_filt_per25'] - (1.5 * tar['h_filt_iqr'])
tar['h_filt_uif'] = tar['h_filt_per75'] + (1.5 * tar['h_filt_iqr'])
tar['h_filt_lof'] = tar['h_filt_per25'] - (3 * tar['h_filt_iqr'])
tar['h_filt_uof'] = tar['h_filt_per75'] + (3 * tar['h_filt_iqr'])
return tar
def timer(length,start_t):
"""timer function to calculate the running time"""
num_proc = sum(length)
# time since processing started
t_step = datetime.now() - start_t
if t_step.total_seconds() <= 60:
print("-> Finished %i points in %0.2f secs" %(num_proc,t_step.total_seconds()))
else:
ts = t_step.total_seconds() / 60
print("-> Finished %i points in %0.2f mins" %(num_proc,ts))
#END def timer
# END - MAIN PROGRAM HELPER FUNCTIONS
# --------------------------------------------
# PyQT GUI Builder Code
# pyqt base class
# Mostly autogenerated from QtDesigner
class Ui_bathySfM_gui(object):
def setupUi(self, bathySfM_gui):
bathySfM_gui.setObjectName("bathySfM_gui")
bathySfM_gui.resize(517, 629)
icon = QtGui.QIcon()
icon.addPixmap(QtGui.QPixmap("icon.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
bathySfM_gui.setWindowIcon(icon)
self.buttonBox = QtWidgets.QDialogButtonBox(bathySfM_gui)
self.buttonBox.setGeometry(QtCore.QRect(20, 443, 471, 32))
self.buttonBox.setOrientation(QtCore.Qt.Horizontal)
self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Close|QtWidgets.QDialogButtonBox.Ok)
self.buttonBox.setObjectName("buttonBox")
self.ptCloud_btn = QtWidgets.QToolButton(bathySfM_gui)
self.ptCloud_btn.setGeometry(QtCore.QRect(460, 31, 31, 22))
self.ptCloud_btn.setObjectName("ptCloud_btn")
self.ptCloud_txt = QtWidgets.QLineEdit(bathySfM_gui)
self.ptCloud_txt.setGeometry(QtCore.QRect(20, 31, 431, 22))
self.ptCloud_txt.setObjectName("ptCloud_txt")
self.ptCloud_lbl = QtWidgets.QLabel(bathySfM_gui)
self.ptCloud_lbl.setGeometry(QtCore.QRect(20, 10, 97, 22))
self.ptCloud_lbl.setObjectName("ptCloud_lbl")
self.cam_btn = QtWidgets.QToolButton(bathySfM_gui)
self.cam_btn.setGeometry(QtCore.QRect(460, 80, 31, 22))
self.cam_btn.setObjectName("cam_btn")
self.cam_txt = QtWidgets.QLineEdit(bathySfM_gui)
self.cam_txt.setGeometry(QtCore.QRect(20, 80, 431, 22))
self.cam_txt.setObjectName("cam_txt")
self.cam_lbl = QtWidgets.QLabel(bathySfM_gui)
self.cam_lbl.setGeometry(QtCore.QRect(20, 60, 161, 16))
self.cam_lbl.setObjectName("cam_lbl")
self.sensor_lbl = QtWidgets.QLabel(bathySfM_gui)
self.sensor_lbl.setGeometry(QtCore.QRect(20, 210, 71, 16))
self.sensor_lbl.setObjectName("sensor_lbl")
self.sensor_txt = QtWidgets.QLineEdit(bathySfM_gui)
self.sensor_txt.setGeometry(QtCore.QRect(20, 230, 431, 22))
self.sensor_txt.setObjectName("sensor_txt")
self.sensor_btn = QtWidgets.QToolButton(bathySfM_gui)
self.sensor_btn.setGeometry(QtCore.QRect(460, 230, 31, 22))
self.sensor_btn.setObjectName("sensor_btn")
self.out_btn = QtWidgets.QToolButton(bathySfM_gui)
self.out_btn.setGeometry(QtCore.QRect(460, 280, 31, 22))
self.out_btn.setObjectName("out_btn")
self.out_txt = QtWidgets.QLineEdit(bathySfM_gui)
self.out_txt.setGeometry(QtCore.QRect(20, 280, 431, 22))
self.out_txt.setObjectName("out_txt")
self.out_lbl = QtWidgets.QLabel(bathySfM_gui)
self.out_lbl.setGeometry(QtCore.QRect(20, 260, 71, 16))
self.out_lbl.setObjectName("out_lbl")
self.top_progBar = QtWidgets.QProgressBar(bathySfM_gui)
self.top_progBar.setGeometry(QtCore.QRect(20, 490, 481, 23))
self.top_progBar.setProperty("value", 0)
self.top_progBar.setObjectName("top_progBar")
self.topProg_Lbl = QtWidgets.QLabel(bathySfM_gui)
self.topProg_Lbl.setGeometry(QtCore.QRect(20, 520, 451, 16))
self.topProg_Lbl.setObjectName("topProg_Lbl")
self.bot_progBar = QtWidgets.QProgressBar(bathySfM_gui)
self.bot_progBar.setGeometry(QtCore.QRect(20, 550, 481, 23))
self.bot_progBar.setProperty("value", 0)
self.bot_progBar.setObjectName("bot_progBar")
self.botProg_lbl = QtWidgets.QLabel(bathySfM_gui)
self.botProg_lbl.setGeometry(QtCore.QRect(20, 580, 451, 16))
self.botProg_lbl.setObjectName("botProg_lbl")
self.groupBox = QtWidgets.QGroupBox(bathySfM_gui)
self.groupBox.setGeometry(QtCore.QRect(20, 110, 471, 91))
self.groupBox.setObjectName("groupBox")
self.precalcCam_box = QtWidgets.QCheckBox(self.groupBox)
self.precalcCam_box.setGeometry(QtCore.QRect(20, 60, 161, 21))
self.precalcCam_box.setObjectName("precalcCam_box")
self.exportCam_box = QtWidgets.QCheckBox(self.groupBox)
self.exportCam_box.setGeometry(QtCore.QRect(20, 30, 441, 21))
self.exportCam_box.setObjectName("exportCam_box")
self.camPickle = QtWidgets.QLineEdit(self.groupBox)
self.camPickle.setEnabled(False)
self.camPickle.setGeometry(QtCore.QRect(190, 60, 231, 22))
self.camPickle.setObjectName("camPickle")
self.pickle_btn = QtWidgets.QToolButton(self.groupBox)
self.pickle_btn.setEnabled(False)
self.pickle_btn.setGeometry(QtCore.QRect(430, 60, 31, 22))
self.pickle_btn.setObjectName("pickle_btn")
self.groupBox_2 = QtWidgets.QGroupBox(bathySfM_gui)
self.groupBox_2.setGeometry(QtCore.QRect(20, 310, 471, 121))
self.groupBox_2.setObjectName("groupBox_2")
self.check_smAng = QtWidgets.QCheckBox(self.groupBox_2)
self.check_smAng.setGeometry(QtCore.QRect(120, 50, 141, 17))
self.check_smAng.setObjectName("check_smAng")
self.check_stats = QtWidgets.QCheckBox(self.groupBox_2)
self.check_stats.setGeometry(QtCore.QRect(120, 20, 121, 17))
self.check_stats.setObjectName("check_stats")
self.check_camStats = QtWidgets.QCheckBox(self.groupBox_2)
self.check_camStats.setGeometry(QtCore.QRect(120, 80, 151, 17))
self.check_camStats.setObjectName("check_camStats")
self.check_filter = QtWidgets.QCheckBox(self.groupBox_2)
self.check_filter.setGeometry(QtCore.QRect(290, 20, 151, 16))
self.check_filter.setObjectName("check_filter")
self.spinBox_angle = QtWidgets.QSpinBox(self.groupBox_2)
self.spinBox_angle.setEnabled(False)
self.spinBox_angle.setGeometry(QtCore.QRect(289, 50, 61, 20))
self.spinBox_angle.setMaximum(90)
self.spinBox_angle.setProperty("value", 35)
self.spinBox_angle.setObjectName("spinBox_angle")
self.spinBox_dist = QtWidgets.QSpinBox(self.groupBox_2)
self.spinBox_dist.setEnabled(False)
self.spinBox_dist.setGeometry(QtCore.QRect(290, 80, 61, 20))
self.spinBox_dist.setMaximum(2000)
self.spinBox_dist.setProperty("value", 100)
self.spinBox_dist.setObjectName("spinBox_dist")
self.label = QtWidgets.QLabel(self.groupBox_2)
self.label.setGeometry(QtCore.QRect(359, 50, 101, 21))
self.label.setObjectName("label")
self.label_2 = QtWidgets.QLabel(self.groupBox_2)
self.label_2.setGeometry(QtCore.QRect(359, 80, 81, 21))
self.label_2.setObjectName("label_2")
self.label_3 = QtWidgets.QLabel(self.groupBox_2)
self.label_3.setGeometry(QtCore.QRect(140, 95, 81, 21))
font = QtGui.QFont()
font.setItalic(True)
self.label_3.setFont(font)
self.label_3.setObjectName("label_3")
self.spinBox_rf = QtWidgets.QDoubleSpinBox(self.groupBox_2)
self.spinBox_rf.setGeometry(QtCore.QRect(20, 70, 71, 22))
self.spinBox_rf.setDecimals(3)
self.spinBox_rf.setMaximum(3.0)
self.spinBox_rf.setSingleStep(0.001)
self.spinBox_rf.setProperty("value", 1.337)
self.spinBox_rf.setObjectName("spinBox_rf")
self.label_4 = QtWidgets.QLabel(self.groupBox_2)
self.label_4.setGeometry(QtCore.QRect(20, 30, 71, 20))
self.label_4.setAlignment(QtCore.Qt.AlignCenter)
self.label_4.setObjectName("label_4")
self.label_5 = QtWidgets.QLabel(self.groupBox_2)
self.label_5.setGeometry(QtCore.QRect(20, 50, 71, 20))
self.label_5.setAlignment(QtCore.Qt.AlignCenter)
self.label_5.setObjectName("label_5")
self.txt_copyright = QtWidgets.QLabel(bathySfM_gui)
self.txt_copyright.setGeometry(QtCore.QRect(310, 600, 191, 16))
self.txt_copyright.setObjectName("txt_copyright")
self.txt_licence = QtWidgets.QLabel(bathySfM_gui)
self.txt_licence.setGeometry(QtCore.QRect(20, 600, 231, 16))
self.txt_licence.setObjectName("txt_licence")
self.groupBox.raise_()
self.groupBox_2.raise_()
self.buttonBox.raise_()
self.ptCloud_btn.raise_()
self.ptCloud_txt.raise_()
self.ptCloud_lbl.raise_()
self.cam_btn.raise_()
self.cam_txt.raise_()
self.cam_lbl.raise_()
self.sensor_lbl.raise_()
self.sensor_txt.raise_()
self.sensor_btn.raise_()
self.out_btn.raise_()
self.out_txt.raise_()
self.out_lbl.raise_()
self.top_progBar.raise_()
self.topProg_Lbl.raise_()
self.bot_progBar.raise_()
self.botProg_lbl.raise_()
self.txt_copyright.raise_()
self.txt_licence.raise_()
# connections (textbox, check box actions)
self.ptCloud_btn.clicked.connect(self.ptCloud_picker)
self.cam_btn.clicked.connect(self.cam_picker)
self.pickle_btn.clicked.connect(self.pickle_picker)
self.sensor_btn.clicked.connect(self.sensor_picker)
self.out_btn.clicked.connect(self.outfile_picker)
self.precalcCam_box.stateChanged.connect(self.precalc_change)
self.check_filter.stateChanged.connect(self.filter_change)
# blank global working directory variable
global working_dir
working_dir = '.'
self.retranslateUi(bathySfM_gui)
self.buttonBox.accepted.connect(self.main_prog)
self.buttonBox.rejected.connect(bathySfM_gui.reject)
QtCore.QMetaObject.connectSlotsByName(bathySfM_gui)
bathySfM_gui.setTabOrder(self.ptCloud_txt, self.ptCloud_btn)
bathySfM_gui.setTabOrder(self.ptCloud_btn, self.cam_txt)
bathySfM_gui.setTabOrder(self.cam_txt, self.cam_btn)
bathySfM_gui.setTabOrder(self.cam_btn, self.exportCam_box)
bathySfM_gui.setTabOrder(self.exportCam_box, self.precalcCam_box)
bathySfM_gui.setTabOrder(self.precalcCam_box, self.camPickle)
bathySfM_gui.setTabOrder(self.camPickle, self.pickle_btn)
bathySfM_gui.setTabOrder(self.pickle_btn, self.sensor_txt)
bathySfM_gui.setTabOrder(self.sensor_txt, self.sensor_btn)
bathySfM_gui.setTabOrder(self.sensor_btn, self.out_txt)
bathySfM_gui.setTabOrder(self.out_txt, self.out_btn)
bathySfM_gui.setTabOrder(self.out_btn, self.check_smAng)
bathySfM_gui.setTabOrder(self.check_smAng, self.check_stats)
bathySfM_gui.setTabOrder(self.check_stats, self.check_camStats)
bathySfM_gui.setTabOrder(self.check_camStats, self.check_filter)
def retranslateUi(self, bathySfM_gui):
_translate = QtCore.QCoreApplication.translate
bathySfM_gui.setWindowTitle(_translate("bathySfM_gui", "py_BathySfM"))
self.ptCloud_btn.setText(_translate("bathySfM_gui", "..."))
self.ptCloud_lbl.setText(_translate("bathySfM_gui", "Input Point Cloud"))
self.cam_btn.setText(_translate("bathySfM_gui", "..."))
self.cam_lbl.setText(_translate("bathySfM_gui", "Camera Position/Orientation File"))
self.sensor_lbl.setText(_translate("bathySfM_gui", "Sensor File"))
self.sensor_btn.setText(_translate("bathySfM_gui", "..."))
self.out_btn.setText(_translate("bathySfM_gui", "..."))
self.out_lbl.setText(_translate("bathySfM_gui", "Output File"))
self.topProg_Lbl.setText(_translate("bathySfM_gui", "Choose Files..."))
self.botProg_lbl.setText(_translate("bathySfM_gui", "Overall Progress"))
self.groupBox.setTitle(_translate("bathySfM_gui", "Camera Options (Advanced Use)"))
self.precalcCam_box.setText(_translate("bathySfM_gui", "Use Precalc\'d Cameras"))
self.exportCam_box.setText(_translate("bathySfM_gui", "Export Camera File (output will be in the Output File folder)"))
self.camPickle.setText(_translate("bathySfM_gui", "Camera Pickle File (*.pkl)"))
self.pickle_btn.setText(_translate("bathySfM_gui", "..."))
self.groupBox_2.setTitle(_translate("bathySfM_gui", "Extra Options"))
self.check_smAng.setText(_translate("bathySfM_gui", "Small Angle Approx."))
self.check_stats.setText(_translate("bathySfM_gui", "Extra Point Stats"))
self.check_camStats.setText(_translate("bathySfM_gui", "Extra Camera Outputs "))
self.check_filter.setText(_translate("bathySfM_gui", "Filtered depth values"))
self.label.setText(_translate("bathySfM_gui", "Max Angle (Deg)"))
self.label_2.setText(_translate("bathySfM_gui", "Max Dist (m)"))
self.label_3.setText(_translate("bathySfM_gui", "First 10000 pts"))
self.label_4.setText(_translate("bathySfM_gui", "Refractive"))
self.label_5.setText(_translate("bathySfM_gui", "Index"))
self.txt_copyright.setText(_translate("bathySfM_gui", "© James T. Dietrich, Ph.D. 2020"))
self.txt_licence.setText(_translate("bathySfM_gui", "v4.5 2020/4/28 - MIT Licence"))
# file picker connection functions
# point cloud file picker
def ptCloud_picker(self):
global working_dir
[filename,filt] = QtWidgets.QFileDialog.getOpenFileName(None,'Open Point Cloud', working_dir, 'Comma Separated File (*.csv)')
if filename:
working_dir = os.path.dirname(filename)
self.ptCloud_txt.setText(filename)
# camera file picker
def cam_picker(self):
global working_dir
[filename,filt] = QtWidgets.QFileDialog.getOpenFileName(None, 'Open Camera File', working_dir, 'Comma Separated File (*.csv)')
if filename:
working_dir = os.path.dirname(filename)
self.cam_txt.setText(filename)
# pre calc'd camera file picker
def pickle_picker (self):
global working_dir
[filename,filt] = QtWidgets.QFileDialog.getOpenFileName(None, 'Open Camera Pickle File', working_dir, 'Pickle (*.pkl)')
if filename:
working_dir = os.path.dirname(filename)
self.camPickle.setText(filename)
# sensor file picker
def sensor_picker(self):
global working_dir
[filename,filt] = QtWidgets.QFileDialog.getOpenFileName(None, 'Open Sensor File', working_dir, 'Comma Separated File (*.csv)')
if filename:
working_dir = os.path.dirname(filename)
self.sensor_txt.setText(filename)
# output file picker
def outfile_picker(self):
global working_dir
[filename,filt] = QtWidgets.QFileDialog.getSaveFileName(None, 'Output File Name', working_dir, 'Comma Separated File (*.csv)')
self.out_txt.setText(filename)
# precalc checkbox - enable options
def precalc_change(self):
if self.precalcCam_box.isChecked():
self.camPickle.setEnabled(True)
self.pickle_btn.setEnabled(True)
self.exportCam_box.setChecked(0)
self.exportCam_box.setEnabled(False)
else:
self.camPickle.setEnabled(False)
self.pickle_btn.setEnabled(False)
self.exportCam_box.setEnabled(True)
# filter checkbox - enable options
def filter_change(self):
if self.check_filter.isChecked():
self.spinBox_angle.setEnabled(True)
self.spinBox_dist.setEnabled(True)
else:
self.spinBox_angle.setEnabled(False)
self.spinBox_dist.setEnabled(False)
# END PyQt Setup
#-------------------------------
#-----------
# MAIN
def main_prog(self):
# get file names from the GUI
target_file = self.ptCloud_txt.text()
cam_file = self.cam_txt.text()
pickle_file = self.camPickle.text()
sensor_file = self.sensor_txt.text()
outfile = self.out_txt.text()
ref_index = self.spinBox_rf.value()
# array of extra options
# True/False for check boxes, numbers from spin boxes
# [0:small angle calc, 1:extra point statistics, 2:extra camera outputs,
# 3:filter depth values, 4:max angle(deg), 5:max distance (m)]
extraOpt = np.array([self.check_smAng.isChecked(),self.check_stats.isChecked(),
self.check_camStats.isChecked(),self.check_filter.isChecked(),
self.spinBox_angle.value(),self.spinBox_dist.value()])
# Debug messages
if self.exportCam_box.isChecked():
print("The Export Cam box is checked")
if self.precalcCam_box.isChecked():
print("The Pre Calc'd Cam box is checked")
print("The extra options are: ")
print(extraOpt)
print("Refractive Index = ", ref_index)
# qt progress bar
self.topProg_Lbl.setText("Data Loading...")
QApplication.processEvents()
#READ INPUT FILES
# target points - as CSV point cloud (x,y,z,w_surf,r,g,b) from CloudCompare
# will be read in 10000 point chunks for memory management purposes
target_file = self.ptCloud_txt.text()
targets = pd.read_csv(target_file, chunksize = 10000)
self.top_progBar.setValue(25)
QApplication.processEvents()
# camera file - from Photoscan (Name, Position, Orientation...)
# check for precalc checkbox, if so read directly to cam_r variable
cam_file = self.cam_txt.text()
if self.precalcCam_box.isChecked():
foot_prints = pd.read_pickle(pickle_file)
cams = pd.read_csv(cam_file)
self.top_progBar.setValue(50)
QApplication.processEvents()
else:
cams = pd.read_csv(cam_file)
self.top_progBar.setValue(50)
QApplication.processEvents()
# camera sensor parameters - user generated
sensor_file = self.sensor_txt.text()
sensor = pd.read_csv(sensor_file)
self.top_progBar.setValue(75)
QApplication.processEvents()
# OUTPUT - CSV file for saving outputs
outfile = self.out_txt.text()
# user feedback
self.top_progBar.setValue(100)
self.topProg_Lbl.setText("Data Loaded...")
print("Data Loaded...")
QApplication.processEvents()
# record the start time of the actual processing
start_time = datetime.now()
# array for count of total points
count = []
# bottom progress bar (num chunks) - reset reader at end
self.bot_progBar.setValue(0)
for idx, tar in enumerate(targets):
chunk_num = idx
self.bot_progBar.setMaximum(chunk_num)
targets = pd.read_csv(target_file, chunksize = 10000)
# Main Processing Loop, for each chunk of points from the reader
for idx, tar in enumerate(targets):
# Error check for mislabeled columns, from CloudCompare the column
# header starts '//X,Y,Z
if tar.columns.values[0] == '//X':
tar.columns.values[0] = 'x'
tar.columns.values[1] = 'y'
if tar.columns.values[0] == 'X':
tar.columns.values[0] = 'x'
tar.columns.values[1] = 'y'
count.append(tar.shape[0])
# if the index(idx) equals 0, use the mean elevation of the first chunk
# use the mean elevation of the first chunk of points to calculate the camera footprints
if idx == 0 and not self.precalcCam_box.isChecked():
# establish mean elevation for footprint mapping from the mean
# elevation of the target points
base_elev = np.mean(tar.sfm_z)
# build camera footprints
foot_prints = footprints(cams,sensor,base_elev,self)
self.topProg_Lbl.setText("Calculating Camera Footprints...")
QApplication.processEvents()
if self.exportCam_box.isChecked():
print("Saving footprints")
foot_file = os.path.dirname(outfile) + '/' + os.path.basename(cam_file)[:-4] + '_cam_foot.pkl'
foot_prints.to_pickle(foot_file)
# timer
cam_end_time = datetime.now()
mins_c = (cam_end_time - start_time).total_seconds() / 60
print("Processed %i cameras in %0.2f minutes" %(np.count_nonzero(cams.x),mins_c))
# use feedback and timer start
self.topProg_Lbl.setText("Performing Bathymetric Correction...")
QApplication.processEvents()
if idx == 0 and self.precalcCam_box.isChecked():
refract_start_time = datetime.now()
# test the visibility of target point based on the camera footprints
cam_r,cam_dist,cam_qual = visibility(cams,foot_prints,tar)
# perform the refraction correction
tar_out, ang_r, x_dist, h, cor_elev = correction(cam_r, tar, ref_index, extraOpt)
#if filter checkbox is ticked, run the pitonFilter function
if extraOpt[3]:
tar_out = pointFilter(tar_out,h,cam_r,cam_dist,extraOpt)
# DEBUG export - Extra Camera Outputs
# will output extra debugging tables for the first batch (10000)
# of points. OUtputs will be in the output folder
# Ideal for working with small test datasets or with validation datasets
if idx == 0 and extraOpt[2]:
debug_path = os.path.dirname(outfile) + '/' + os.path.basename(target_file)[:-4]
file = debug_path + '_tar_out.pkl'
tar_out.to_pickle(file)
file = debug_path + '_cam_r.csv'
np.savetxt(file,cam_r,delimiter=",")
file = debug_path + '_cam_dist.csv'
np.savetxt(file,cam_dist,delimiter=",")
file = debug_path + '_ang_r.csv'
np.savetxt(file,ang_r,delimiter=",")
file = debug_path + '_x_dist.csv'
np.savetxt(file,x_dist,delimiter=",")
file = debug_path + '_h_all.csv'
np.savetxt(file,h,delimiter=",")
file = debug_path + '_cor_elev.csv'
np.savetxt(file,cor_elev,delimiter=",")
# Camera Quality Statistics
if 'quality' in cams.columns:
tar_out['cam_qual_mean'] = np.nanmean(cam_qual, axis = 1)
tar_out['cam_qual_median'] = np.nanmean(cam_qual, axis = 1)
tar_out['cam_qual_min'] = np.nanmin(cam_qual, axis = 1)
tar_out['cam_qual_max'] = np.nanmax(cam_qual, axis = 1)
# output - for the first chunk write header row, else append subsequent
# chunks without headers
if idx == 0:
with open(outfile, 'a') as f:
tar_out.to_csv(f, header=True, index=False)
else:
with open(outfile, 'a') as f:
tar_out.to_csv(f, header=False, index=False)
# user feedback, def timer and bottom progress bar
self.bot_progBar.setValue(idx)
self.botProg_lbl.setText("Processed %i points"%(sum(count)))
QApplication.processEvents()
if self.precalcCam_box.isChecked():
timer(count, refract_start_time)
else:
timer(count, cam_end_time)
# User feedback on the total processing time
tot_count = sum(count)
tot_time = (datetime.now() - start_time).total_seconds() / 60
print("%i points processed, Total Running Time = %0.2f minutes" %(tot_count,tot_time))
self.botProg_lbl.setText('Processing Complete')
QApplication.processEvents()
# QT RUN
#------------------------
class AppWindow(QDialog):
def __init__(self):
super().__init__()
self.ui = Ui_bathySfM_gui()
self.ui.setupUi(self)
self.show()
#------------------------
# MAIN RUN
if __name__ == "__main__":
app = QApplication(sys.argv)
w = AppWindow()
w.show()
sys.exit(app.exec_())