forked from lengstrom/fast-style-transfer
-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathrun_webcam.py
168 lines (141 loc) · 7.02 KB
/
run_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from __future__ import print_function
from __future__ import division
import sys
sys.path.insert(0, 'src')
import argparse
import numpy as np
import transform, vgg, pdb, os
import tensorflow as tf
import cv2
from datetime import datetime
models_all=[{"ckpt":"models/ckpt_cubist_b20_e4_cw05/fns.ckpt", "style":"styles/cubist-landscape-justineivu-geanina.jpg"},
{"ckpt":"models/ckpt_hokusai_b20_e4_cw15/fns.ckpt", "style":"styles/hokusai.jpg"},
{"ckpt":"models/wave/wave.ckpt", "style":"styles/hokusai.jpg"},
{"ckpt":"models/ckpt_kandinsky_b20_e4_cw05/fns.ckpt", "style":"styles/kandinsky2.jpg"},
{"ckpt":"models/ckpt_liechtenstein_b20_e4_cw15/fns.ckpt", "style":"styles/liechtenstein.jpg"},
{"ckpt":"models/ckpt_maps3_b5_e2_cw10_tv1_02/fns.ckpt", "style":"styles/maps3.jpg"},
{"ckpt":"models/ckpt_wu_b20_e4_cw15/fns.ckpt", "style":"styles/wu4.jpg"},
{"ckpt":"models/ckpt_elsalahi_b20_e4_cw05/fns.ckpt", "style":"styles/elsalahi2.jpg"},
{"ckpt":"models/scream/scream.ckpt", "style":"styles/the_scream.jpg"},
{"ckpt":"models/udnie/udnie.ckpt", "style":"styles/udnie.jpg"},
{"ckpt":"models/ckpt_clouds_b5_e2_cw05_tv1_04/fns.ckpt", "style":"styles/clouds.jpg"}]
models=[{"ckpt":"models/ckpt_cubist_b20_e4_cw05/fns.ckpt", "style":"styles/cubist-landscape-justineivu-geanina.jpg"},
{"ckpt":"models/ckpt_hokusai_b20_e4_cw15/fns.ckpt", "style":"styles/hokusai.jpg"},
{"ckpt":"models/ckpt_kandinsky_b20_e4_cw05/fns.ckpt", "style":"styles/kandinsky2.jpg"},
{"ckpt":"models/ckpt_liechtenstein_b20_e4_cw15/fns.ckpt", "style":"styles/liechtenstein.jpg"},
{"ckpt":"models/ckpt_wu_b20_e4_cw15/fns.ckpt", "style":"styles/wu4.jpg"},
{"ckpt":"models/ckpt_elsalahi_b20_e4_cw05/fns.ckpt", "style":"styles/elsalahi2.jpg"},
{"ckpt":"models/scream/scream.ckpt", "style":"styles/the_scream.jpg"},
{"ckpt":"models/udnie/udnie.ckpt", "style":"styles/udnie.jpg"},
{"ckpt":"models/ckpt_maps3_b5_e2_cw10_tv1_02/fns.ckpt", "style":"styles/maps3.jpg"}]
# parser
parser = argparse.ArgumentParser()
parser.add_argument('--device_id', type=int, help='camera device id (default 0)', required=False, default=0)
parser.add_argument('--width', type=int, help='width to resize camera feed to (default 320)', required=False, default=640)
parser.add_argument('--disp_width', type=int, help='width to display output (default 640)', required=False, default=1200)
parser.add_argument('--disp_source', type=int, help='whether to display content and style images next to output, default 1', required=False, default=1)
parser.add_argument('--horizontal', type=int, help='whether to concatenate horizontally (1) or vertically(0)', required=False, default=1)
parser.add_argument('--num_sec', type=int, help='number of seconds to hold current model before going to next (-1 to disable)', required=False, default=-1)
def load_checkpoint(checkpoint, sess):
saver = tf.train.Saver()
try:
saver.restore(sess, checkpoint)
style = cv2.imread(checkpoint)
return True
except:
print("checkpoint %s not loaded correctly" % checkpoint)
return False
def get_camera_shape(cam):
""" use a different syntax to get video size in OpenCV 2 and OpenCV 3 """
cv_version_major, _, _ = cv2.__version__.split('.')
if cv_version_major == '3' or cv_version_major == '4':
return cam.get(cv2.CAP_PROP_FRAME_WIDTH), cam.get(cv2.CAP_PROP_FRAME_HEIGHT)
else:
return cam.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH), cam.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)
def make_triptych(disp_width, frame, style, output, horizontal=True):
ch, cw, _ = frame.shape
sh, sw, _ = style.shape
oh, ow, _ = output.shape
disp_height = int(disp_width * oh / ow)
h = int(ch * disp_width * 0.5 / cw)
w = int(cw * disp_height * 0.5 / ch)
if horizontal:
full_img = np.concatenate([
cv2.resize(frame, (int(w), int(0.5*disp_height))),
cv2.resize(style, (int(w), int(0.5*disp_height)))], axis=0)
full_img = np.concatenate([full_img, cv2.resize(output, (disp_width, disp_height))], axis=1)
else:
full_img = np.concatenate([
cv2.resize(frame, (int(0.5 * disp_width), h)),
cv2.resize(style, (int(0.5 * disp_width), h))], axis=1)
full_img = np.concatenate([full_img, cv2.resize(output, (disp_width, disp_width * oh // ow))], axis=0)
return full_img
def main(device_id, width, disp_width, disp_source, horizontal, num_sec):
t1 = datetime.now()
idx_model = 0
device_t='/gpu:0'
g = tf.Graph()
soft_config = tf.ConfigProto(allow_soft_placement=True)
soft_config.gpu_options.allow_growth = True
with g.as_default(), g.device(device_t), tf.Session(config=soft_config) as sess:
cam = cv2.VideoCapture(device_id)
cv2.namedWindow("frame", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("frame", cv2.WND_PROP_FULLSCREEN, 1)
cam_width, cam_height = get_camera_shape(cam)
width = width if width % 4 == 0 else width + 4 - (width % 4) # must be divisible by 4
height = int(width * float(cam_height/cam_width))
height = height if height % 4 == 0 else height + 4 - (height % 4) # must be divisible by 4
img_shape = (height, width, 3)
batch_shape = (1,) + img_shape
print("batch shape", batch_shape)
print("disp source is ", disp_source)
img_placeholder = tf.placeholder(tf.float32, shape=batch_shape, name='img_placeholder')
preds = transform.net(img_placeholder)
# load checkpoint
load_checkpoint(models[idx_model]["ckpt"], sess)
style = cv2.imread(models[idx_model]["style"])
# enter cam loop
while True:
ret, frame = cam.read()
frame = cv2.resize(frame, (width, height))
frame = cv2.flip(frame, 1)
X = np.zeros(batch_shape, dtype=np.float32)
X[0] = frame
output = sess.run(preds, feed_dict={img_placeholder:X})
output = output[:, :, :, [2,1,0]].reshape(img_shape)
output = np.clip(output, 0, 255).astype(np.uint8)
output = cv2.resize(output, (width, height))
if disp_source:
full_img = make_triptych(disp_width, frame, style, output, horizontal)
cv2.imshow('frame', full_img)
else:
oh, ow, _ = output.shape
output = cv2.resize(output, (disp_width, int(oh * disp_width / ow)))
cv2.imshow('frame', output)
key_ = cv2.waitKey(1)
if key_ == 27:
break
elif key_ == ord('a'):
idx_model = (idx_model + len(models) - 1) % len(models)
print("load %d / %d : %s " % (idx_model, len(models), models[idx_model]))
load_checkpoint(models[idx_model]["ckpt"], sess)
style = cv2.imread(models[idx_model]["style"])
elif key_ == ord('s'):
idx_model = (idx_model + 1) % len(models)
print("load %d / %d : %s " % (idx_model, len(models), models[idx_model]))
load_checkpoint(models[idx_model]["ckpt"], sess)
style = cv2.imread(models[idx_model]["style"])
t2 = datetime.now()
dt = t2-t1
if num_sec>0 and dt.seconds > num_sec:
t1 = datetime.now()
idx_model = (idx_model + 1) % len(models)
print("load %d / %d : %s " % (idx_model, len(models), models[idx_model]))
load_checkpoint(models[idx_model]["ckpt"], sess)
style = cv2.imread(models[idx_model]["style"])
# done
cam.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
opts = parser.parse_args()
main(opts.device_id, opts.width, opts.disp_width, opts.disp_source==1, opts.horizontal==1, opts.num_sec),