diff --git a/Admission Prediction using ML/admission_prediction_using_machine_learning.py b/Admission Prediction using ML/admission_prediction_using_machine_learning.py index 625e6dc..2601e50 100644 --- a/Admission Prediction using ML/admission_prediction_using_machine_learning.py +++ b/Admission Prediction using ML/admission_prediction_using_machine_learning.py @@ -11,6 +11,7 @@ """# **Upload and Read file**""" from google.colab import files + files.upload() df = pd.read_csv("Admission_Predict_Ver1.1.csv") @@ -22,7 +23,7 @@ df.columns -df.drop('Serial No.',axis=1,inplace=True) +df.drop("Serial No.", axis=1, inplace=True) df.head() @@ -37,39 +38,48 @@ sns.distplot(df.CGPA) -sns.pairplot(df,x_vars=['SOP','GRE Score','TOEFL Score','CGPA'],y_vars=['Chance of Admit '],height=5, aspect=0.8, kind='reg') +sns.pairplot( + df, + x_vars=["SOP", "GRE Score", "TOEFL Score", "CGPA"], + y_vars=["Chance of Admit "], + height=5, + aspect=0.8, + kind="reg", +) """# **Creating Model**""" df.columns -x=df[['GRE Score', 'TOEFL Score', 'CGPA']] +x = df[["GRE Score", "TOEFL Score", "CGPA"]] -y=df[['Chance of Admit ']] +y = df[["Chance of Admit "]] from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import random -x_train, x_test, y_train, y_test =train_test_split(x,y,test_size=0.20,random_state=0) +x_train, x_test, y_train, y_test = train_test_split( + x, y, test_size=0.20, random_state=0 +) x_train.shape y_train.shape linreg = LinearRegression() -linreg.fit(x_train,y_train) +linreg.fit(x_train, y_train) """# **Testing and Evaluating the Model**""" -y_pred=linreg.predict(x_test) +y_pred = linreg.predict(x_test) y_pred[:7] y_test.head(7) from sklearn import metrics -print(metrics.mean_absolute_error(y_test,y_pred)) #96% prediction +print(metrics.mean_absolute_error(y_test, y_pred)) # 96% prediction