-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
451 lines (365 loc) · 12.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
"""
whisper-pod-transcriber uses OpenAI's Whisper modal to do speech-to-text transcription
of podcasts.
"""
import dataclasses
import datetime
import json
import pathlib
from typing import Iterator, Tuple
import modal
from . import config, podcast, search
logger = config.get_logger(__name__)
volume = modal.SharedVolume().persist("dataset-cache-vol")
app_image = (
modal.Image.debian_slim()
.pip_install(
"https://github.com/openai/whisper/archive/9f70a352f9f8630ab3aa0d06af5cb9532bd8c21d.tar.gz",
"dacite",
"jiwer",
"ffmpeg-python",
"gql[all]~=3.0.0a5",
"pandas",
"loguru==0.6.0",
"torchaudio==0.12.1",
)
.apt_install("ffmpeg")
.pip_install("ffmpeg-python")
)
search_image = modal.Image.debian_slim().pip_install(
"scikit-learn~=0.24.2",
"tqdm~=4.46.0",
"numpy~=1.23.3",
"dacite",
)
stub = modal.Stub(
"whisper-pod-transcriber",
image=app_image,
secrets=[modal.Secret.from_name("podchaser")],
)
stub.in_progress = modal.Dict()
def utc_now() -> datetime.datetime:
return datetime.datetime.now(datetime.timezone.utc)
def get_episode_metadata_path(podcast_id: str, guid_hash: str) -> pathlib.Path:
return config.PODCAST_METADATA_DIR / podcast_id / f"{guid_hash}.json"
def get_transcript_path(guid_hash: str) -> pathlib.Path:
return config.TRANSCRIPTIONS_DIR / f"{guid_hash}.json"
@stub.function(shared_volumes={config.CACHE_DIR: volume})
def populate_podcast_metadata(podcast_id: str):
from gql import gql
metadata_dir = config.PODCAST_METADATA_DIR / podcast_id
metadata_dir.mkdir(parents=True, exist_ok=True)
metadata_path = config.PODCAST_METADATA_DIR / podcast_id / "metadata.json"
pod_metadata: podcast.PodcastMetadata = podcast.fetch_podcast(
gql, podcast_id
)
with open(metadata_path, "w") as f:
json.dump(dataclasses.asdict(pod_metadata), f)
episodes = fetch_episodes.call(
show_name=pod_metadata.title, podcast_id=podcast_id
)
for ep in episodes:
metadata_path = get_episode_metadata_path(podcast_id, ep.guid_hash)
with open(metadata_path, "w") as f:
json.dump(dataclasses.asdict(ep), f)
logger.info(f"Populated metadata for {pod_metadata.title}")
@stub.asgi(
mounts=[modal.Mount("/assets", local_dir=config.ASSETS_PATH)],
shared_volumes={config.CACHE_DIR: volume},
keep_warm=2,
)
def fastapi_app():
import fastapi.staticfiles
from .api import web_app
web_app.mount(
"/", fastapi.staticfiles.StaticFiles(directory="/assets", html=True)
)
return web_app
@stub.function(
image=app_image,
)
def search_podcast(name):
from gql import gql
logger.info(f"Searching for '{name}'")
client = podcast.create_podchaser_client()
podcasts_raw = podcast.search_podcast_name(
gql, client, name, max_results=10
)
logger.info(f"Found {len(podcasts_raw)} results for '{name}'")
return [
podcast.PodcastMetadata(
id=pod["id"],
title=pod["title"],
description=pod["description"],
html_description=pod["htmlDescription"],
language=pod["language"],
web_url=pod["webUrl"],
)
for pod in podcasts_raw
]
@stub.function(
image=search_image,
shared_volumes={config.CACHE_DIR: volume},
timeout=(15 * 60),
)
def index():
import dataclasses
from collections import defaultdict
import dacite
logger.info("Starting transcript indexing process.")
config.SEARCH_DIR.mkdir(parents=True, exist_ok=True)
episodes = defaultdict(list)
guid_hash_to_episodes = {}
for pod_dir in config.PODCAST_METADATA_DIR.iterdir():
if not pod_dir.is_dir():
continue
for file in pod_dir.iterdir():
if file.name == "metadata.json":
continue
with open(file, "r") as f:
data = json.load(f)
ep = dacite.from_dict(
data_class=podcast.EpisodeMetadata, data=data
)
episodes[ep.podcast_title].append(ep)
guid_hash_to_episodes[ep.guid_hash] = ep
logger.info(f"Loaded {len(guid_hash_to_episodes)} podcast episodes.")
transcripts = {}
if config.TRANSCRIPTIONS_DIR.exists():
for file in config.TRANSCRIPTIONS_DIR.iterdir():
with open(file, "r") as f:
data = json.load(f)
guid_hash = file.stem.split("-")[0]
transcripts[guid_hash] = data
# Important: These have to be the same length and have same episode order.
# i-th element of indexed_episodes is the episode indexed by the i-th element
# of search_records
indexed_episodes = []
search_records = []
for key, value in transcripts.items():
idxd_episode = guid_hash_to_episodes.get(key)
if idxd_episode:
search_records.append(
search.SearchRecord(
title=idxd_episode.title,
text=value["text"],
)
)
# Prepare records for JSON serialization
indexed_episodes.append(dataclasses.asdict(idxd_episode))
logger.info(
f"Matched {len(search_records)} transcripts to episode records."
)
filepath = config.SEARCH_DIR / "all.json"
logger.info(f"writing {filepath}")
with open(filepath, "w") as f:
json.dump(indexed_episodes, f)
logger.info(
"calc feature vectors for all transcripts, keeping track of similar podcasts"
)
X, v = search.calculate_tfidf_features(search_records)
sim_svm = search.calculate_similarity_with_svm(X)
filepath = config.SEARCH_DIR / "sim_tfidf_svm.json"
logger.info(f"writing {filepath}")
with open(filepath, "w") as f:
json.dump(sim_svm, f)
logger.info("calculate the search index to support search")
search_dict = search.build_search_index(search_records, v)
filepath = config.SEARCH_DIR / "search.json"
logger.info(f"writing {filepath}")
with open(filepath, "w") as f:
json.dump(search_dict, f)
@stub.function(
schedule=modal.Period(hours=4),
timeout=(30 * 60),
)
def refresh_index():
logger.info(f"Running scheduled index refresh at {utc_now()}")
index.call()
def split_silences(
path: str, min_segment_length: float = 30.0, min_silence_length: float = 1.0
) -> Iterator[Tuple[float, float]]:
"""Split audio file into contiguous chunks using the ffmpeg `silencedetect` filter.
Yields tuples (start, end) of each chunk in seconds."""
import re
import ffmpeg
silence_end_re = re.compile(
r" silence_end: (?P<end>[0-9]+(\.?[0-9]*)) \| silence_duration: (?P<dur>[0-9]+(\.?[0-9]*))"
)
metadata = ffmpeg.probe(path)
duration = float(metadata["format"]["duration"])
reader = (
ffmpeg.input(str(path))
.filter("silencedetect", n="-10dB", d=min_silence_length)
.output("pipe:", format="null")
.run_async(pipe_stderr=True)
)
cur_start = 0.0
num_segments = 0
while True:
line = reader.stderr.readline().decode("utf-8")
if not line:
break
match = silence_end_re.search(line)
if match:
silence_end, silence_dur = match.group("end"), match.group("dur")
split_at = float(silence_end) - (float(silence_dur) / 2)
if (split_at - cur_start) < min_segment_length:
continue
yield cur_start, split_at
cur_start = split_at
num_segments += 1
# silencedetect can place the silence end *after* the end of the full audio segment.
# Such segments definitions are negative length and invalid.
if duration > cur_start and (duration - cur_start) > min_segment_length:
yield cur_start, duration
num_segments += 1
logger.info(f"Split {path} into {num_segments} segments")
@stub.function(
image=app_image,
shared_volumes={config.CACHE_DIR: volume},
cpu=2,
)
def transcribe_segment(
start: float,
end: float,
audio_filepath: pathlib.Path,
model: config.ModelSpec,
):
import tempfile
import time
import ffmpeg
import torch
import whisper
t0 = time.time()
with tempfile.NamedTemporaryFile(suffix=".mp3") as f:
(
ffmpeg.input(str(audio_filepath))
.filter("atrim", start=start, end=end)
.output(f.name)
.overwrite_output()
.run(quiet=True)
)
use_gpu = torch.cuda.is_available()
device = "cuda" if use_gpu else "cpu"
model = whisper.load_model(
model.name, device=device, download_root=config.MODEL_DIR
)
result = model.transcribe(f.name, language="en", fp16=use_gpu) # type: ignore
logger.info(
f"Transcribed segment {start:.2f} to {end:.2f} of {end - start:.2f} in {time.time() - t0:.2f} seconds."
)
# Add back offsets.
for segment in result["segments"]:
segment["start"] += start
segment["end"] += start
return result
@stub.function(
image=app_image,
shared_volumes={config.CACHE_DIR: volume},
timeout=900,
)
def transcribe_episode(
audio_filepath: pathlib.Path,
result_path: pathlib.Path,
model: config.ModelSpec,
):
segment_gen = split_silences(str(audio_filepath))
output_text = ""
output_segments = []
for result in transcribe_segment.starmap(
segment_gen, kwargs=dict(audio_filepath=audio_filepath, model=model)
):
output_text += result["text"]
output_segments += result["segments"]
result = {
"text": output_text,
"segments": output_segments,
"language": "en",
}
logger.info(f"Writing openai/whisper transcription to {result_path}")
with open(result_path, "w") as f:
json.dump(result, f, indent=4)
@stub.function(
image=app_image,
shared_volumes={config.CACHE_DIR: volume},
timeout=900,
)
def process_episode(podcast_id: str, episode_id: str):
import dacite
import whisper
from modal import container_app
try:
# pre-download the model to the cache path, because the _download fn is not
# thread-safe.
model = config.DEFAULT_MODEL
whisper._download(whisper._MODELS[model.name], config.MODEL_DIR, False)
config.RAW_AUDIO_DIR.mkdir(parents=True, exist_ok=True)
config.TRANSCRIPTIONS_DIR.mkdir(parents=True, exist_ok=True)
metadata_path = get_episode_metadata_path(podcast_id, episode_id)
with open(metadata_path, "r") as f:
data = json.load(f)
episode = dacite.from_dict(
data_class=podcast.EpisodeMetadata, data=data
)
destination_path = config.RAW_AUDIO_DIR / episode_id
podcast.store_original_audio(
url=episode.original_download_link,
destination=destination_path,
)
logger.info(
f"Using the {model.name} model which has {model.params} parameters."
)
logger.info(f"Wrote episode metadata to {metadata_path}")
transcription_path = get_transcript_path(episode.guid_hash)
if transcription_path.exists():
logger.info(
f"Transcription already exists for '{episode.title}' with ID {episode.guid_hash}."
)
logger.info("Skipping transcription.")
else:
transcribe_episode.call(
audio_filepath=destination_path,
result_path=transcription_path,
model=model,
)
finally:
del container_app.in_progress[episode_id]
return episode
@stub.function(
image=app_image,
shared_volumes={config.CACHE_DIR: volume},
)
def fetch_episodes(show_name: str, podcast_id: str, max_episodes=100):
import hashlib
from gql import gql
client = podcast.create_podchaser_client()
episodes_raw = podcast.fetch_episodes_data(
gql, client, podcast_id, max_episodes=max_episodes
)
logger.info(f"Retrieved {len(episodes_raw)} raw episodes")
episodes = [
podcast.EpisodeMetadata(
podcast_id=podcast_id,
podcast_title=show_name,
title=ep["title"],
publish_date=ep["airDate"],
description=ep["description"],
episode_url=ep["url"],
html_description=ep["htmlDescription"],
guid=ep["guid"],
guid_hash=hashlib.md5(ep["guid"].encode("utf-8")).hexdigest(),
original_download_link=ep["audioUrl"],
)
for ep in episodes_raw
if "guid" in ep and ep["guid"] is not None
]
no_guid_count = len(episodes) - len(episodes_raw)
logger.info(f"{no_guid_count} episodes had no GUID and couldn't be used.")
return episodes
@stub.local_entrypoint
def search_entrypoint(name: str):
# To search for a podcast, run:
# modal run whisper_pod_transcriber/main.py --name "search string"
for pod in search_podcast.call(name):
print(pod)