-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcorplot.r
165 lines (126 loc) · 5.09 KB
/
corplot.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Correlation plot.
# Ref [1] http://sciblogs.co.nz/the-atavism/2009/05/27/plotting-a-correlation-matrix-with-ggplot2/
# [2] http://tolstoy.newcastle.edu.au/R/help/05/04/2659.html
require(ggplot2)
require(reshape2)
corplot <- function(x, subTitle = '', correlationMethod = 'pearson', only.significant = F,...) {
argList<-list(...)
## Mandatory
# x = , the input data
# subtitle = '', String
# correlationMethod = 'pearson'. See cor() for all variants
# only.significant T/F. If true then only the significant correlations will be plotted
## Extra
# arglist
#Make the correlation matrix
(x.s <- cor(x, method = correlationMethod))
# same with p-values, then use symnum() to represent the values as asterisks
cor.pval <- function(x, alternative="two-sided", ...) {
corMat <- cor(x, ...)
n <- nrow(x)
df <- n - 2
STATISTIC <- sqrt(df) * corMat / sqrt(1 - corMat^2)
p <- pt(STATISTIC, df)
p <- if (alternative == "less") {
}
else if (alternative == "greater") {
1 - p
}
else 2 * pmin(p, 1 - p)
p
}
p <- cor.pval(x)
# melt the correlation data
m <- melt(x.s)
# Lägg till stjärnor för att visa signifikanser
stars <- as.character(symnum(p, cutpoints=c(0,0.001,0.01,0.05,1),
symbols=c('***', '**', '*', '' ),
legend=F))
# Add stars to the melted data
m$stars = stars
# NOT WORKING NOT WORKING NOT WORKING NOT WORKING NOT WORKING NOT WORKING
# Add grouping variable to the melted data
if( !is.null(argList$group)) {
m$groupVar = as.factor(argList$group)
}
#now put them alltogether (with melt() to reshape the correlation matrix) molten.iris
names(m) <- c("M1", "M2", "corr", "pvalue")
# Define each triangle of the plot matric and the diagonal (mi.ids)
mi.ids <- subset(m, M1 == M2) # diagonal
mi.lower <- subset(m[lower.tri(x.s),], M1 != M2) # Upper
mi.upper <- subset(m[upper.tri(x.s),], M1 != M2)
if( only.significant) {
mi.lower <- mi.lower[mi.lower$pvalue != '',]
}
# now plot just these values, adding labels (geom_text) for the names and th values
p1 <- ggplot(data = mi.lower, aes(M1, M2, fill=corr)) + theme_bw() + geom_tile() +
geom_text(data=mi.lower, aes(label=paste(round(corr,3), pvalue))) +
geom_text(data=mi.ids, aes(label=M2, colour="grey40"))
# scale_colour_identity() will make the labels pick up the specified colours and the gradient for the scale_fill is specified
if (only.significant){ meas <- as.character(unique(mi.lower$M2)) } else{
meas <- as.character(unique(m$M2))}
p2 <- p1 + scale_colour_identity() +
scale_fill_gradientn(colours= c("red", "white", "blue"), limits=c(1,-1)) +
scale_x_discrete(limits=meas[length(meas):1]) + #flip the x axis
scale_y_discrete(limits=meas) # This rows focuses on lower triange
# Manage subtitle
mainTitle = paste('Correlations', correlationMethod)
theTitle = paste(mainTitle,subTitle,sep = '\n')
p2 + xlab(NULL) + ylab(NULL) +
theme(axis.text.x= element_blank()) +
theme(axis.text.y= element_blank()) +
theme(axis.ticks= element_blank()) +
theme(panel.border= element_blank()) +
theme(legend.position='none') +
labs(title = theTitle)
}
corplot2 <- function(x, y, subTitle = '', correlationMethod = 'pearson', ...) {
#Make the correlation matrix
(x.s <- cor(x,y, method = correlationMethod))
# # same with p-values, then use symnum() to represent the values as asterisks
cor.pval <- function(x,y, alternative="two-sided", ...) {
corMat <- cor(x,y, ...)
n <- nrow(x)
df <- n - 2
STATISTIC <- sqrt(df) * corMat / sqrt(1 - corMat^2)
p <- pt(STATISTIC, df)
p <- if (alternative == "less") {
p
}
else if (alternative == "greater") {
1 - p
}
else 2 * pmin(p, 1 - p)
p
}
p <- cor.pval(x,y)
# melt the correlation data
m <- melt(x.s)
stars <- as.character(symnum(p, cutpoints=c(0,0.001,0.01,0.05,1),
symbols=c('***', '**', '*', '' ),
legend=F))
m$stars = stars
#now put them alltogether (with melt() to reshape the correlation matrix) molten.iris
names(m) <- c("M1", "M2", "corr", "pvalue")
# # Define each triangle of the plot matric and the diagonal (mi.ids)
# mi.ids <- subset(m, M1 == M2) # diagonal
# mi.lower <- subset(m[lower.tri(x.s),], M1 != M2) # Upper
# mi.upper <- subset(m[upper.tri(x.s),], M1 != M2)
# now plot just these values, adding labels (geom_text) for the names and th values
p1 <- ggplot(data = m, aes(M1, M2, fill=corr)) + theme_bw() + geom_tile() +
geom_text(data = m, aes(label=paste(round(corr,3), pvalue)), colour = 'grey10') # correlations as text
# scale_colour_identity() will make the labels pick up the specified colours and the gradient for the scale_fill is specified
meas <- as.character(unique(m$M2))
p2 <- p1 + scale_colour_identity() +
scale_fill_gradientn(colours= c("red", "white", "blue"), limits=c(1,-1)) +
# scale_x_discrete(limits=meas[length(meas):1]) + #flip the x axis
scale_y_discrete(limits=meas)
# Manage subtitle
mainTitle = paste('Correlations', correlationMethod)
theTitle = paste(mainTitle,subTitle,sep = '\n')
p2 + xlab(NULL) + ylab(NULL) +
theme(axis.ticks= element_blank()) +
theme(panel.border= element_blank()) +
theme(legend.position='none') +
theme(title = theTitle)
}