You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
However, when I try to load the model using,I am seeing the issue:
from transformers import AutoImageProcessor, DetrForObjectDetection
import torch
model = DetrForObjectDetection.from_pretrained("xyz/ddetr-finetuned-balloon-v2", id2label={0:"balloon"})
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
processor = AutoImageProcessor.from_pretrained("xyz/ddetr-finetuned-balloon-v2")
RuntimeError: Error(s) in loading state_dict for DetrForObjectDetection:
size mismatch for model.query_position_embeddings.weight: copying a param with shape torch.Size([100, 512]) from checkpoint, the shape in current model is torch.Size([100, 256]).
You may consider adding ignore_mismatched_sizes=True in the model from_pretrained method.
My suspicion is this warning after executing this:
model = Detr(lr=1e-4, lr_backbone=1e-5, weight_decay=1e-4)
outputs = model(pixel_values=batch['pixel_values'], pixel_mask=batch['pixel_mask'])
config.json: 100%
6.60k/6.60k [00:00<00:00, 176kB/s]
You are using a model of type detr to instantiate a model of type deformable_detr. This is not supported for all configurations of models and can yield errors.
pytorch_model.bin: 100%
167M/167M [00:01<00:00, 98.1MB/s]
Some weights of DeformableDetrForObjectDetection were not initialized from the model checkpoint at facebook/detr-resnet-50 and are newly initialized: ['bbox_embed.0.layers.0.bias', 'bbox_embed.0.layers.0.weight', 'bbox_embed.0.layers.1.bias', 'bbox_embed.0.layers.1.weight', 'bbox_embed.0.layers.2.bias', 'bbox_embed.0.layers.2.weight', 'bbox_embed.1.layers.0.bias', 'bbox_embed.1.layers.0.weight', 'bbox_embed.1.layers.1.bias', 'bbox_embed.1.layers.1.weight', 'bbox_embed.1.layers.2.bias', 'bbox_embed.1.layers.2.weight', 'bbox_embed.2.layers.0.bias', 'bbox_embed.2.layers.0.weight', 'bbox_embed.2.layers.1.bias', 'bbox_embed.2.layers.1.weight', 'bbox_embed.2.layers.2.bias', 'bbox_embed.2.layers.2.weight', 'bbox_embed.3.layers.0.bias', 'bbox_embed.3.layers.0.weight', 'bbox_embed.3.layers.1.bias', 'bbox_embed.3.layers.1.weight', 'bbox_embed.3.layers.2.bias', 'bbox_embed.3.layers.2.weight', 'bbox_embed.4.layers.0.bias', 'bbox_embed.4.layers.0.weight', 'bbox_embed.4.layers.1.bias', 'bbox_embed.4.layers.1.weight', 'bbox_embed.4.layers.2.bias', 'bbox_embed.4.layers.2.weight', 'bbox_embed.5.layers.0.bias', 'bbox_embed.5.layers.0.weight', 'bbox_embed.5.layers.1.bias', 'bbox_embed.5.layers.1.weight', 'bbox_embed.5.layers.2.bias', 'bbox_embed.5.layers.2.weight', 'class_embed.0.bias', 'class_embed.0.weight', 'class_embed.1.bias', 'class_embed.1.weight', 'class_embed.2.bias', 'class_embed.2.weight', 'class_embed.3.bias', 'class_embed.3.weight', 'class_embed.4.bias', 'class_embed.4.weight', 'class_embed.5.bias', 'class_embed.5.weight', 'model.decoder.layers.0.encoder_attn.attention_weights.bias', 'model.decoder.layers.0.encoder_attn.attention_weights.weight', 'model.decoder.layers.0.encoder_attn.output_proj.bias', 'model.decoder.layers.0.encoder_attn.output_proj.weight', 'model.decoder.layers.0.encoder_attn.sampling_offsets.bias', 'model.decoder.layers.0.encoder_attn.sampling_offsets.weight', 'model.decoder.layers.0.encoder_attn.value_proj.bias', 'model.decoder.layers.0.encoder_attn.value_proj.weight', 'model.decoder.layers.1.encoder_attn.attention_weights.bias', 'model.decoder.layers.1.encoder_attn.attention_weights.weight', 'model.decoder.layers.1.encoder_attn.output_proj.bias', 'model.decoder.layers.1.encoder_attn.output_proj.weight', 'model.decoder.layers.1.encoder_attn.sampling_offsets.bias', 'model.decoder.layers.1.encoder_attn.sampling_offsets.weight', 'model.decoder.layers.1.encoder_attn.value_proj.bias', 'model.decoder.layers.1.encoder_attn.value_proj.weight', 'model.decoder.layers.2.encoder_attn.attention_weights.bias', 'model.decoder.layers.2.encoder_attn.attention_weights.weight', 'model.decoder.layers.2.encoder_attn.output_proj.bias', 'model.decoder.layers.2.encoder_attn.output_proj.weight', 'model.decoder.layers.2.encoder_attn.sampling_offsets.bias', 'model.decoder.layers.2.encoder_attn.sampling_offsets.weight', 'model.decoder.layers.2.encoder_attn.value_proj.bias', 'model.decoder.layers.2.encoder_attn.value_proj.weight', 'model.decoder.layers.3.encoder_attn.attention_weights.bias', 'model.decoder.layers.3.encoder_attn.attention_weights.weight', 'model.decoder.layers.3.encoder_attn.output_proj.bias', 'model.decoder.layers.3.encoder_attn.output_proj.weight', 'model.decoder.layers.3.encoder_attn.sampling_offsets.bias', 'model.decoder.layers.3.encoder_attn.sampling_offsets.weight', 'model.decoder.layers.3.encoder_attn.value_proj.bias', 'model.decoder.layers.3.encoder_attn.value_proj.weight', 'model.decoder.layers.4.encoder_attn.attention_weights.bias', 'model.decoder.layers.4.encoder_attn.attention_weights.weight', 'model.decoder.layers.4.encoder_attn.output_proj.bias', 'model.decoder.layers.4.encoder_attn.output_proj.weight', 'model.decoder.layers.4.encoder_attn.sampling_offsets.bias', 'model.decoder.layers.4.encoder_attn.sampling_offsets.weight', 'model.decoder.layers.4.encoder_attn.value_proj.bias', 'model.decoder.layers.4.encoder_attn.value_proj.weight', 'model.decoder.layers.5.encoder_attn.attention_weights.bias', 'model.decoder.layers.5.encoder_attn.attention_weights.weight', 'model.decoder.layers.5.encoder_attn.output_proj.bias', 'model.decoder.layers.5.encoder_attn.output_proj.weight', 'model.decoder.layers.5.encoder_attn.sampling_offsets.bias', 'model.decoder.layers.5.encoder_attn.sampling_offsets.weight', 'model.decoder.layers.5.encoder_attn.value_proj.bias', 'model.decoder.layers.5.encoder_attn.value_proj.weight', 'model.encoder.layers.0.self_attn.attention_weights.bias', 'model.encoder.layers.0.self_attn.attention_weights.weight', 'model.encoder.layers.0.self_attn.output_proj.bias', 'model.encoder.layers.0.self_attn.output_proj.weight', 'model.encoder.layers.0.self_attn.sampling_offsets.bias', 'model.encoder.layers.0.self_attn.sampling_offsets.weight', 'model.encoder.layers.0.self_attn.value_proj.bias', 'model.encoder.layers.0.self_attn.value_proj.weight', 'model.encoder.layers.1.self_attn.attention_weights.bias', 'model.encoder.layers.1.self_attn.attention_weights.weight', 'model.encoder.layers.1.self_attn.output_proj.bias', 'model.encoder.layers.1.self_attn.output_proj.weight', 'model.encoder.layers.1.self_attn.sampling_offsets.bias', 'model.encoder.layers.1.self_attn.sampling_offsets.weight', 'model.encoder.layers.1.self_attn.value_proj.bias', 'model.encoder.layers.1.self_attn.value_proj.weight', 'model.encoder.layers.2.self_attn.attention_weights.bias', 'model.encoder.layers.2.self_attn.attention_weights.weight', 'model.encoder.layers.2.self_attn.output_proj.bias', 'model.encoder.layers.2.self_attn.output_proj.weight', 'model.encoder.layers.2.self_attn.sampling_offsets.bias', 'model.encoder.layers.2.self_attn.sampling_offsets.weight', 'model.encoder.layers.2.self_attn.value_proj.bias', 'model.encoder.layers.2.self_attn.value_proj.weight', 'model.encoder.layers.3.self_attn.attention_weights.bias', 'model.encoder.layers.3.self_attn.attention_weights.weight', 'model.encoder.layers.3.self_attn.output_proj.bias', 'model.encoder.layers.3.self_attn.output_proj.weight', 'model.encoder.layers.3.self_attn.sampling_offsets.bias', 'model.encoder.layers.3.self_attn.sampling_offsets.weight', 'model.encoder.layers.3.self_attn.value_proj.bias', 'model.encoder.layers.3.self_attn.value_proj.weight', 'model.encoder.layers.4.self_attn.attention_weights.bias', 'model.encoder.layers.4.self_attn.attention_weights.weight', 'model.encoder.layers.4.self_attn.output_proj.bias', 'model.encoder.layers.4.self_attn.output_proj.weight', 'model.encoder.layers.4.self_attn.sampling_offsets.bias', 'model.encoder.layers.4.self_attn.sampling_offsets.weight', 'model.encoder.layers.4.self_attn.value_proj.bias', 'model.encoder.layers.4.self_attn.value_proj.weight', 'model.encoder.layers.5.self_attn.attention_weights.bias', 'model.encoder.layers.5.self_attn.attention_weights.weight', 'model.encoder.layers.5.self_attn.output_proj.bias', 'model.encoder.layers.5.self_attn.output_proj.weight', 'model.encoder.layers.5.self_attn.sampling_offsets.bias', 'model.encoder.layers.5.self_attn.sampling_offsets.weight', 'model.encoder.layers.5.self_attn.value_proj.bias', 'model.encoder.layers.5.self_attn.value_proj.weight', 'model.input_proj.0.0.bias', 'model.input_proj.0.0.weight', 'model.input_proj.0.1.bias', 'model.input_proj.0.1.weight', 'model.input_proj.1.0.bias', 'model.input_proj.1.0.weight', 'model.input_proj.1.1.bias', 'model.input_proj.1.1.weight', 'model.input_proj.2.0.bias', 'model.input_proj.2.0.weight', 'model.input_proj.2.1.bias', 'model.input_proj.2.1.weight', 'model.input_proj.3.0.bias', 'model.input_proj.3.0.weight', 'model.input_proj.3.1.bias', 'model.input_proj.3.1.weight', 'model.level_embed', 'model.reference_points.bias', 'model.reference_points.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Some weights of DeformableDetrForObjectDetection were not initialized from the model checkpoint at facebook/detr-resnet-50 and are newly initialized because the shapes did not match:
model.query_position_embeddings.weight: found shape torch.Size([100, 256]) in the checkpoint and torch.Size([100, 512]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
The text was updated successfully, but these errors were encountered:
I started with this DETR notebook as base.
Training seems successful as I get : INFO:pytorch_lightning.utilities.rank_zero:
Trainer.fit
stopped:max_steps=50
reached.I successfully pushed the model to Huggingface repo:
However, when I try to load the model using,I am seeing the issue:
My suspicion is this warning after executing this:
The text was updated successfully, but these errors were encountered: