-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCryptographyRSA.h
305 lines (226 loc) · 11.9 KB
/
CryptographyRSA.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*
This class permits to use RSA Cryptography.
It's just a PoC. Nothing more.
The RSA system is based on modular arithmetic
The principle is this:
Server generate a number n (class of congruence), from the moltiplications of two prime numbers
(it's fundamental that it already has a huge set of prime numbers from which to draw out the primes)
After that server can generate a public key, said Encoding key, that need to be coprime with fi(n).
fi(n) is a the eulero function and return the cardinality of the multiplicative group mod n.
If this encoding key (C) is coprime with fi(n) we know that exists a reverse of C, called D for which
this congruence is true:
c*d=1 mod fi(n)
so if x is the data that we want to encrypt,
data_encrypted= pow(x,C)
data_decrypted= pow(x,D)
to discover the D, we have to applicate the euclide algorithm, and we have to express the rest of
the division of fi(n) and C (or 1) like a linear combination of fi(n) and C. Then, we look at the
coefficent that multiply C and we have D.
The private key is composed from C and fi(n).
The public key is composed from D and n.
The difficult to decrypt the data encoded with this algorithm is that an attacker need to factorize a
very huge number (composed from two prime numbers) if he can't factorize the n, he can't get the
fi(n) and he can't calculate the D.
Bortoli Tomas 2014
*/
#include <stdlib.h>
#include <ctime>
#include <iostream>
#include <math.h>
using namespace std;
//Primes numbers used to create n (modulo)
//const long primes[4] = {13,17,23,29};
const long primes[1000] =
{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,
131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,
263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,
409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,
569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,
719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,
881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033
,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181
,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,
1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,
1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,
1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,
1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,
1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,
2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,
2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,
2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,
2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,
2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,
2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,
3037,3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,3187,3191,3203,3209,
3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,
3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,
3539,3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,3677,
3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,3793,3797,3803,3821,3823,3833,3847,3851,
3853,3863,3877,3881,3889,3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,4007,4013,
4019,4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,4153,4157,4159,4177,
4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,4271,4273,4283,4289,4297,4327,4337,4339,4349,
4357,4363,4373,4391,4397,4409,4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,
4523,4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,4663,4673,4679,4691,
4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,4799,4801,4813,4817,4831,4861,4871,4877,4889,
4903,4909,4919,4931,4933,4937,4943,4951,4957,4967,4969,4973,4987,4993,4999,5003,5009,5011,5021,5023,
5039,5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,5189,5197,5209,5227,
5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,5333,5347,5351,5381,5387,5393,5399,5407,5413,
5417,5419,5431,5437,5441,5443,5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,
5569,5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,5701,5711,5717,5737,
5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,5839,5843,5849,5851,5857,5861,5867,5869,5879,
5881,5897,5903,5923,5927,5939,5953,5981,5987,6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,
6091,6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,6229,6247,6257,6263,
6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,6343,6353,6359,6361,6367,6373,6379,6389,6397,
6421,6427,6449,6451,6469,6473,6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,
6619,6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,6763,6779,6781,6791,
6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,6883,6899,6907,6911,6917,6947,6949,6959,6961,
6967,6971,6977,6983,6991,6997,7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,
7151,7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,7307,7309,7321,7331,
7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,7477,7481,7487,7489,7499,7507,7517,7523,7529,
7537,7541,7547,7549,7559,7561,7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,
7687,7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,7841,7853,7867,7873,
7877,7879,7883,7901,7907,7919};
class CryptographyRSA{
private:
long getInverse(long,long);
//n and c are the public key, they are distribute to the host to transmit
//encrypted data to the server that will decrypt that with the private key.
//n is the modulo
//c is the encryption key or encoding key
long n,c;
//fiN and d are the private key, they are stored longo the server, and no one must see them.
// They are used from the server to decode data encrypted from the clients with the public key.
//If someone know d, he can decode the data encrypted. If someone know fiN, he can simply
//compute d and then decode the data encrypted.
//fiN = eulero_function(n)
//d reverse of c mod fiN
long fiN,d;
public:
CryptographyRSA();
void createPublicKey();
void createPrivateKey();
long getPublicKey();
long getPrivateKey();
long getN();
long getFiN();
long encrypt(long);
long decrypt(long);
};
//Function that returns the inverse of m mod q, it use the euclide algorithm
// to make the divisions and find the rests, and then it express the ultimate
// rest (1, because q and m must be coprime for cryptography) like a linear
//combination of q and m, and the final coefficent of m, is d, the inverse.
long CryptographyRSA::getInverse(long q, long m){
long rest=0;
//cout<<q<<" "<<m<<endl<<endl;
long results[20];
long rests[20];
long dividends[20];
long divisors[20];
long numberOfResults=0;
long numberOfRests=0;
long numberOfDividends=0;
long numberOfDivisors=0;
while(rest!=1){
rest=q%m;
dividends[numberOfDividends++]=q;
divisors[numberOfDivisors++]=m;
results[numberOfResults++]=q/m;
rests[numberOfRests++]=rest;
q=m;
m=rest;
}
long coefficent1=1;
long coefficent2=-results[numberOfResults-1];
long x1=dividends[numberOfDividends-1];
long x2=divisors[numberOfDivisors-1];
long i=numberOfDivisors-1;
while(true){
i--;
coefficent1+=coefficent2*(-results[i]);
/*
cout<<coefficent1<<endl;
cout<<coefficent2<<endl<<endl;
*/
i--;
if(i<=-1)
break;
coefficent2+=coefficent1*(-results[i]);
/*
cout<<coefficent1<<endl;
cout<<coefficent2<<endl<<endl;
*/
}
return coefficent2;
}
//Constructor of the class, here are decided the two primes numbers that compose n and is calculated fi(n).
//To calculate fi(n) decompose a number longo his prime factor, for example:
//n=p1*p2*...
//fi(n)=fi(p1)*fi(p2)*...
//if the number is a prime
//fi(prime^k)=(p^k)-(p^(k-1))
CryptographyRSA::CryptographyRSA(){
srand(time(NULL));
long r1=abs((long)(rand()))%(sizeof(primes)/sizeof(long));
long r2;
//compute r2, different from r1; to choose 2 different primes
do{
r2=abs((long)(rand()))%(sizeof(primes)/sizeof(long));
}while(r2==r1);
//in our case the computation of eulero function is straightforward
fiN=(primes[r1]-1)*(primes[r2]-1);
n=primes[r1]*primes[r2];
}
//Create an encoding key, also part of the public key.
void CryptographyRSA::createPublicKey(){
this->c=0;
long limit=600;
//prevent that the key is set to fi(n)-1 because in that case, the key d (decoding key) would be equals to c.
do{
limit--;
long i=(abs(rand())+1)%fiN;
if(i==0) i++;
for(;i<fiN;i++)
if(fiN%i==1){
c=i;
break;
}
//When limit reach zero, exit from the loop, this prevent infinite loop when the
//only coprime number with fi(n) is fi(n)-1
if(limit==0) {cout<<"!!!!!\tlimit reached\t!!!!!"<<endl; break;}
}while(c==fiN-1);
}
//Find the inverse of c mod fiN, and that will be the decoding key (part of the private key).
void CryptographyRSA::createPrivateKey(){
d=getInverse(fiN,c);
while(d<0) d=fiN+d;
}
long CryptographyRSA::getPublicKey(){
return c;
}
long CryptographyRSA::getPrivateKey(){
return d;
}
long CryptographyRSA::getN(){
return n;
}
long CryptographyRSA::getFiN(){
return fiN;
}
//Simplified power computation with mod reduction, to avoid overflows
long CryptographyRSA::encrypt(long value){
long ret=1;
for(long i=c;i>0;i--){
ret*=value;
ret=ret%n;
}
return ret;
}
long CryptographyRSA::decrypt(long value){
long ret=1;
for(long i=d;i>0;i--){
ret*=value;
ret=ret%n;
}
return ret;
}