forked from jbowtie/kowhai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathearley.go
656 lines (579 loc) · 16.9 KB
/
earley.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
package kowhai
import "fmt"
// A term is anything that can appear on the RHS of a rule
// Here we define Symbol (for literal terminals that appear in a rule definition),
// Rule (for non-terminals), TypedTerm (for matching type of token produced by a lexer)
type Term interface {
IsRule() bool
MatchesToken(token Token) bool
}
// A trivial interface for the tokens comsumed by the parser
type Token interface {
AsValue() string //exposes a string value for symbol matches
TokenType() int // exposes a token type for a type match
}
// Simple token type that can be delivered to the parser
type LiteralToken string
func (l LiteralToken) AsValue() string {
return string(l)
}
func (l LiteralToken) TokenType() int {
return 0
}
// Used only in building the parse tree
// will need to refactor away later
type SppfTerm string
func (l SppfTerm) String() string {
return fmt.Sprintf("_%v_", string(l))
}
func (l SppfTerm) IsRule() bool {
return false
}
func (l SppfTerm) MatchesToken(token Token) bool {
return false
}
// this will hopefully become a SPPF node
type AhfaCompletion struct {
start int
end int
term Term
}
type SppfNode struct {
start int
end int
//rule *AhfaRule //revisit in future
rule Term
left *SppfNode
right *SppfNode
}
func (s *SppfNode) Label() string {
return fmt.Sprintf("%v %v %v", s.rule, s.start, s.end)
}
func (s *SppfNode) String() string {
if s.right == nil && s.left == nil {
return fmt.Sprintf("<%v, %v, %v>", s.rule, s.start, s.end)
}
if s.right == nil {
return fmt.Sprintf("<%v, %v, %v left(%v)>", s.rule, s.start, s.end, s.left)
}
return fmt.Sprintf("<%v, %v, %v left(%v) right(%v)>", s.rule, s.start, s.end, s.left, s.right)
}
//type SppfNodeSet map[string]*SppfNode
//used to implement sort interface
type ParseNodes []AhfaCompletion
func (x ParseNodes) Len() int {
return len(x)
}
func (x ParseNodes) Swap(i, j int) {
x[i], x[j] = x[j], x[i]
}
func (x ParseNodes) Less(i, j int) bool {
if x[i].start < x[j].start {
return true
}
if x[i].start > x[j].start {
return false
}
return x[i].end > x[j].end
}
// Tracks AFHA state and parent state
// should parent be a pointer to the parent EI?
// symbol is used when memoizing leo items
type EarleyItem struct {
state int
parent int
symbol Term
parseNode *SppfNode
}
type EarleyItemSet struct {
pos int // position in the string
token string //the symbol we are moving over
items []EarleyItem // items in the set
ustates map[string]bool //used to dedupe when adding
transitions map[Term][]EarleyItem
}
//add an item to the EIS
func (set *EarleyItemSet) AddItem(state int, parent int, parseNode *SppfNode) {
//force uniqueness
hash := fmt.Sprint(state, parent)
if set.ustates[hash] {
return
}
set.ustates[hash] = true
set.items = append(set.items, EarleyItem{state, parent, nil, parseNode})
}
func (item EarleyItem) String() string {
if item.parseNode == nil {
return fmt.Sprint("{State ", item.state, " Parent ", item.parent, "}")
}
return fmt.Sprint("{State ", item.state, " Parent ", item.parent, " Node ", item.parseNode, "}")
}
func (set *EarleyItemSet) String() string {
return fmt.Sprint(set.pos, ": ", set.token, set.items)
}
type MarpaParser struct {
machine *AhfaMachine
table []*EarleyItemSet
cnodes ParseNodes
optimizers []ParseTreeOptimizer
}
// adds an Earley item for the confirmed state,
// plus any items predicted by the presence of a null transition
func (parser *MarpaParser) addEIM(i int, confirmedAH int, origin int, parseNode *SppfNode) {
//add the confirmed state
parser.table[i].AddItem(confirmedAH, origin, parseNode)
predictedAH := parser.machine.Goto(confirmedAH, nil)
//add predicted state, if any
if predictedAH > -1 {
parser.table[i].AddItem(predictedAH, i, parseNode)
}
}
// this handles the next token delivered by the lexer
func (parser *MarpaParser) ScanToken(token Token) (err error) {
col := len(parser.table)
set := &EarleyItemSet{col, token.AsValue(), nil, make(map[string]bool), make(map[Term][]EarleyItem)}
parser.table = append(parser.table, set)
nodes := make(map[string]*SppfNode)
parser.scan_pass(col, token, nodes)
// if there are no items after the scan pass,
// there's a syntax error!
if set.items == nil {
return fmt.Errorf("SYNTAX ERROR: %s at position %d", set.token, col)
}
parser.reduce_pass(col, nodes)
return
}
// create a new parser that uses the machine
func CreateParser(machine *AhfaMachine) MarpaParser {
table := []*EarleyItemSet{}
table = append(table, &EarleyItemSet{0, "", nil, make(map[string]bool), make(map[Term][]EarleyItem)})
parser := MarpaParser{machine, table, nil, nil}
parser.initial()
return parser
}
func (parser *MarpaParser) AddOptimization(o ParseTreeOptimizer) {
parser.optimizers = append(parser.optimizers, o)
}
// dump the Earley sets for inspection
func (parser *MarpaParser) DumpMachine() {
fmt.Println(parser.machine)
}
// dump the Earley sets for inspection
func (parser *MarpaParser) DumpTable() {
fmt.Println(parser.table)
}
func (parser *MarpaParser) MakeParseNode(rule Term, origin int, location int, w *SppfNode, v *SppfNode, nodes map[string]*SppfNode) (y *SppfNode) {
s := rule
/*if origin == location {
return
}*/
if location == origin+1 {
y = v
return
}
y = &SppfNode{origin, location, s, w, v}
existing := nodes[y.Label()]
if existing == nil {
nodes[y.Label()] = y
} else {
y = existing
}
return
}
func (parser *MarpaParser) BuildParseTree() *ParseTreeNode {
// if the last Earley Set contains an accepted state
// we have valid input
final_set := parser.table[len(parser.table)-1]
for _, item := range final_set.items {
if item.parent == 0 {
if parser.machine.AcceptedState(item.state) {
tree := parser.buildTree()
return parser.OptimizeParseTree(tree)
}
}
}
// otherwise we have an incomplete expression
//reject input
fmt.Println("===========")
fmt.Println("ERROR: INCOMPLETE EXPRESSION")
parser.DumpTable()
fmt.Println("===========")
return nil
}
func (parser *MarpaParser) buildTree() *ParseTreeNode {
var top *ParseTreeNode
var curr *ParseTreeNode
for i := len(parser.cnodes); i > 0; i-- {
n := parser.cnodes[i-1]
tn := &ParseTreeNode{n.start, n.end, n.term, nil, nil}
//init top if needed
if top == nil {
top = tn
curr = tn
continue
}
for curr != nil {
//might be a parent
if tn.start >= curr.start && tn.end <= curr.end {
//assume we can always add an actual token as a child
_, isToken := tn.Term.(*ParseTreeToken)
if !isToken && curr.Term.IsRule() {
r := curr.Term.(*Rule)
//check that this is a valid child
//if not it's the result of an incomplete
// (parallel, most likely) parse tree
if r != nil {
if !r.IsAllowedChild(n.term) {
tn = nil
break
}
}
}
tn.Parent = curr
curr.Children = append([]*ParseTreeNode{tn}, curr.Children...)
break
}
curr = curr.Parent
}
//we may have decided to drop the node
//in which case we keep looking for a valid child
if tn != nil {
curr = tn
}
}
//top should be GAMMA node so expect actual top node as only child
return top.Children[0]
}
// run any optimizations over the tree
func (parser *MarpaParser) OptimizeParseTree(tree *ParseTreeNode) *ParseTreeNode {
curr := tree
for _, opt := range parser.optimizers {
curr = processNode(opt, curr)
}
return curr
}
func processNode(o ParseTreeOptimizer, node *ParseTreeNode) *ParseTreeNode {
//preprocess first...
n := o.Preprocess(node)
var children []*ParseTreeNode
for _, c := range n.Children {
newchild := processNode(o, c)
if newchild != nil {
children = append(children, newchild)
}
}
//some of the child nodes may have been replaced
n.Children = children
//return the results of postprocessing
return o.Postprocess(n)
}
// placeholder function where we can look at the parse tree once we are building one!
func (parser *MarpaParser) PrintAcceptedTree() bool {
// if the last Earley Set contains an accepted state
// we have valid input
final_set := parser.table[len(parser.table)-1]
for _, item := range final_set.items {
if item.parent == 0 {
if parser.machine.AcceptedState(item.state) {
fmt.Println("===========")
parser.PrintCNodes()
//dumpTree(item.parseNode, 0)
fmt.Println("===========")
return true
}
}
}
// otherwise we have an incomplete expression
//reject input
fmt.Println("===========")
fmt.Println("ERROR: INCOMPLETE EXPRESSION")
parser.DumpTable()
fmt.Println("===========")
return false
}
type ParseTreeToken struct {
Token Token
}
func (t *ParseTreeToken) String() string {
return fmt.Sprintf("TOKEN( %v )", t.Token.AsValue())
}
func (t *ParseTreeToken) IsRule() bool {
return false
}
func (t *ParseTreeToken) MatchesToken(token Token) bool {
return token == t.Token
}
type ParseTreeNode struct {
start int
end int
Term Term
Parent *ParseTreeNode
Children []*ParseTreeNode
}
func (node *ParseTreeNode) Overlaps(other *ParseTreeNode) bool {
if node.start == other.start {
return true
}
return false
}
func (parser *MarpaParser) PrintCNodes() {
top := parser.BuildParseTree()
DumpTreeNode(top, 0)
}
func DumpTreeNode(parseNode *ParseTreeNode, depth int) {
if depth > 0 {
fmts := fmt.Sprintf("%%%ds", depth*2)
fmt.Printf(fmts, " ")
}
if parseNode == nil {
fmt.Println("<nil>")
return
}
fmt.Println(parseNode.start, parseNode.end, parseNode.Term)
if parseNode.Children != nil {
for _, n := range parseNode.Children {
DumpTreeNode(n, depth+1)
}
}
}
func dumpTree(parseNode *SppfNode, depth int) {
if depth > 0 {
fmts := fmt.Sprintf("%%%ds", depth*2)
fmt.Printf(fmts, " ")
}
if parseNode == nil {
fmt.Println("<nil>")
return
}
fmt.Println(parseNode.start, parseNode.end, parseNode.rule)
if parseNode.left != nil {
dumpTree(parseNode.left, depth+1)
}
if parseNode.right != nil {
dumpTree(parseNode.right, depth+1)
}
}
// initialize the parser
func (parser *MarpaParser) initial() {
parser.addEIM(0, 0, 0, nil)
nodes := make(map[string]*SppfNode)
parser.reduce_pass(0, nodes)
return
}
func (parser *MarpaParser) scan_pass(location int, token Token, nodes map[string]*SppfNode) {
if location == 0 {
return
}
s := Symbol(token.AsValue())
v := &SppfNode{location - 1, location, s, nil, nil}
//record the symbol itself in the completions list
//helps build a parse tree later
parser.recordCompletion(location-1, location, &ParseTreeToken{token})
// lookup by symbol
set := parser.table[location-1].transitions[s]
for _, item := range set {
toAH := parser.machine.Goto(item.state, s)
if toAH > -1 {
h := item.parent
w := item.parseNode
lbl := fmt.Sprintf("%v-%v-%v", h, s, location)
y := parser.MakeParseNode(SppfTerm(lbl), h, location, w, v, nodes)
//fmt.Println("SCAN", y)
//fmt.Println(" ", w)
//fmt.Println(" ", v)
parser.addEIM(location, toAH, item.parent, y)
}
}
//lookup by token type
t := TypedTerm(token.TokenType())
set = parser.table[location-1].transitions[t]
for _, item := range set {
toAH := parser.machine.Goto(item.state, t)
if toAH > -1 {
h := item.parent
w := item.parseNode
y := parser.MakeParseNode(s, h, location, w, v, nodes)
parser.addEIM(location, toAH, item.parent, y)
}
}
return
}
// for now simply record a rule completion
// in future we should be building a tree
func (parser *MarpaParser) recordCompletion(start, end int, term Term) {
c := AhfaCompletion{start, end, term}
parser.cnodes = append(parser.cnodes, c)
}
func (parser *MarpaParser) reduce_pass(location int, nodes map[string]*SppfNode) {
eset := parser.table[location]
//for each EIM in location table
for j := 0; j < len(eset.items); j++ {
item := eset.items[j]
for _, rule := range parser.machine.Completed(item.state) {
parser.reduceOneLHS(location, item.parent, rule, item, nodes)
}
}
parser.memoize_transitions(location)
return
}
// this builds a transition table for postdot symbols
// this will be used as a lookup when future columns
// try a reduction (can also be used to speed up scans)
func (parser *MarpaParser) memoize_transitions(location int) {
current_set := parser.table[location]
current_items := current_set.items
trans := make(map[Term][]EarleyItem)
//construct sym -> []EIM
for _, item := range current_items {
// postdot symbols are the keys in the transitions table
for postdot, _ := range parser.machine.transitions[item.state] {
trans[postdot] = append(trans[postdot], item)
}
}
for postdot, items := range trans {
// only worry about unique postdots
if len(items) == 1 && postdot != nil && postdot.IsRule() {
r := postdot.(*Rule)
// only bother with leo handling of right recursive rules
if r.IsRightRecursive() {
leo := EarleyItem{items[0].state, items[0].parent, postdot, nil}
current_set.transitions[postdot] = append(current_set.transitions[postdot], leo)
} else {
current_set.transitions[postdot] = items
}
} else {
current_set.transitions[postdot] = items
}
}
//fmt.Println("MEMO", location, current_set.transitions)
//for each postdot in iES
// if leo_eligible // right recursive, unique postdot
// transitions(location, postdot) = LIM
// else
// transitions(location, postdot) = EIMs.contains(postdot)
return
}
func (parser *MarpaParser) reduceOneLHS(location int, origin int, term Term, trigger EarleyItem, nodes map[string]*SppfNode) {
//get all the postDOTs in this location
// is Eh in SPPF terms!
set := parser.table[origin]
postDOTs := set.transitions[term]
// term is a COMPLETED rule
// recognize a right recursive rule
/*r := term.(*Rule)
if r != nil && r.IsRightRecursive() {
fmt.Println(r)
}*/
//fmt.Println("COMPLETE", term, "STARTS", origin, "ENDS", location)
if origin != location {
parser.recordCompletion(origin, location, term)
}
// loop through the postdots from the original location
for _, item := range postDOTs {
if item.symbol != nil {
//fmt.Println("Leo reduction for", term, origin, location)
parser.leoReduce(location, item)
} else {
parser.earleyReduce(location, item, term, trigger, nodes)
}
}
for _, item := range set.items {
if !inSlice(item, postDOTs) {
parser.earleyReduce(location, item, term, trigger, nodes)
}
}
}
// must be some slice utils somewhere
func inSlice(item EarleyItem, set []EarleyItem) bool {
for _, i := range set {
if i == item {
return true
}
}
return false
}
//perform a leo reduction per marpa paper
func (parser *MarpaParser) leoReduce(location int, item EarleyItem) {
toAH := parser.machine.Goto(item.state, item.symbol)
if toAH > -1 {
//fmt.Println("Leo reduction to", item.parent, location)
parser.addEIM(location, toAH, item.parent, nil)
}
}
//perform an earley reduction per Marpa paper
func (parser *MarpaParser) earleyReduce(location int, item EarleyItem, term Term, trigger EarleyItem, nodes map[string]*SppfNode) {
toAH := parser.machine.Goto(item.state, term)
if toAH > -1 {
k := item.parent
z := item.parseNode
w := trigger.parseNode
y := parser.MakeParseNode(term, k, location, z, w, nodes)
/*fmt.Println("REDUCE", y)
if y != w {
fmt.Println("w ", w)
}
if y != z {
fmt.Println("z ", z)
}*/
parser.addEIM(location, toAH, item.parent, y)
}
}
/*
// init a grammar for testing
func grammar() (start *Rule) {
n := &Rule{"N", []Production{CreateSymbol("boy")}}
n.AddSymbol("telescope")
d := &Rule{"D", []Production{}}
d.AddSymbol("a")
d.AddSymbol("an")
d.AddSymbol("the")
//this makes D optional
//d.Add(Production{})
v := &Rule{"V", []Production{}}
v.AddSymbol("saw")
p := &Rule{"P", []Production{}}
p.AddSymbol("with")
np := &Rule{"NP", []Production{Production{d, n}}}
np.AddSymbol("john")
pp := &Rule{"PP", []Production{Production{p, np}}}
np.Add(Production{np, pp})
vp := &Rule{"VP", []Production{Production{v, np}}}
vp.Add(Production{vp, pp})
s := &Rule{"S", []Production{Production{np, vp}}}
return s
}
func grammar() (start *Rule) {
g := &Grammar{}
g.rules = make(map[string]*Rule)
// S = a b? c
g.CreateRule("S", Symbol("a"), g.Optional(Symbol("b")), Symbol("c"))
// S = d e* f
g.CreateRule("S", Symbol("d"), g.Star(Symbol("e")), Symbol("f"))
// S = g h+ i
g.CreateRule("S", Symbol("g"), g.Plus(Symbol("h")), Symbol("i"))
// S = j INT k
g.CreateRule("S", Symbol("j"), g.Type(1), Symbol("k"))
g.SetStart("S")
//g.DumpRules()
return g.GetStartRule()
}
*/
/*
func main() {
g := grammar()
machine := BuildStateMachine(g)
//fmt.Println(machine)
//fmt.Println("===========")
//TODO: turn into proper tests
marpa(machine, strings.Split("a b c", " "))
marpa(machine, strings.Split("a c", " "))
marpa(machine, strings.Split("d f", " "))
marpa(machine, strings.Split("d e f", " "))
marpa(machine, strings.Split("d e e e e e f", " "))
//marpa(machine, strings.Split("d g f", " ")) test
marpa(machine, strings.Split("j 1 k", " "))
//marpa(machine, strings.Split("john saw a boy", " "))
//marpa(machine, strings.Split("john saw the boy with the telescope", " "))
//marpa(machine, strings.Split("a boy john saw", " ")) //deliberate syntax error
//marpa(machine, strings.Split("john saw", " ")) //incomplete
}*/