-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathreconstruct.py
235 lines (199 loc) · 12.9 KB
/
reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import meshzoo
import numpy as np
from pathlib import Path
from pyremesh import remesh_botsch
import torch
from tqdm import tqdm
from nds.core import (
Mesh, Renderer
)
from nds.losses import (
mask_loss, normal_consistency_loss, laplacian_loss, shading_loss
)
from nds.modules import (
SpaceNormalization, NeuralShader, ViewSampler
)
from nds.utils import (
AABB, read_views, read_mesh, write_mesh, visualize_mesh_as_overlay, visualize_views, generate_mesh, mesh_generator_names
)
if __name__ == '__main__':
parser = ArgumentParser(description='Multi-View Mesh Reconstruction with Neural Deferred Shading', formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_dir', type=Path, default="./data", help="Path to the input data")
parser.add_argument('--input_bbox', type=Path, default=None, help="Path to the input bounding box. If None, it is computed from the input mesh")
parser.add_argument('--output_dir', type=Path, default="./out", help="Path to the output directory")
parser.add_argument('--initial_mesh', type=str, default="vh32", help="Initial mesh, either a path or one of [vh16, vh32, vh64, sphere16]")
parser.add_argument('--image_scale', type=int, default=1, help="Scale applied to the input images. The factor is 1/image_scale, so image_scale=2 halves the image size")
parser.add_argument('--iterations', type=int, default=2000, help="Total number of iterations")
parser.add_argument('--run_name', type=str, default=None, help="Name of this run")
parser.add_argument('--lr_vertices', type=float, default=1e-3, help="Step size/learning rate for the vertex positions")
parser.add_argument('--lr_shader', type=float, default=1e-3, help="Step size/learning rate for the shader parameters")
parser.add_argument('--upsample_iterations', type=int, nargs='+', default=[500, 1000, 1500], help="Iterations at which to perform mesh upsampling")
parser.add_argument('--save_frequency', type=int, default=100, help="Frequency of mesh and shader saving (in iterations)")
parser.add_argument('--visualization_frequency', type=int, default=100, help="Frequency of shader visualization (in iterations)")
parser.add_argument('--visualization_views', type=int, nargs='+', default=[], help="Views to use for visualization. By default, a random view is selected each time")
parser.add_argument('--device', type=int, default=0, choices=([-1] + list(range(torch.cuda.device_count()))), help="GPU to use; -1 is CPU")
parser.add_argument('--weight_mask', type=float, default=2.0, help="Weight of the mask term")
parser.add_argument('--weight_normal', type=float, default=0.1, help="Weight of the normal term")
parser.add_argument('--weight_laplacian', type=float, default=40.0, help="Weight of the laplacian term")
parser.add_argument('--weight_shading', type=float, default=1.0, help="Weight of the shading term")
parser.add_argument('--shading_percentage', type=float, default=0.75, help="Percentage of valid pixels considered in the shading loss (0-1)")
parser.add_argument('--hidden_features_layers', type=int, default=3, help="Number of hidden layers in the positional feature part of the neural shader")
parser.add_argument('--hidden_features_size', type=int, default=256, help="Width of the hidden layers in the neural shader")
parser.add_argument('--fourier_features', type=str, default='positional', choices=(['none', 'gfft', 'positional']), help="Input encoding used in the neural shader")
parser.add_argument('--activation', type=str, default='relu', choices=(['relu', 'sine']), help="Activation function used in the neural shader")
parser.add_argument('--fft_scale', type=int, default=4, help="Scale parameter of frequency-based input encodings in the neural shader")
# Add module arguments
ViewSampler.add_arguments(parser)
args = parser.parse_args()
# Select the device
device = torch.device('cpu')
if torch.cuda.is_available() and args.device >= 0:
device = torch.device(f'cuda:{args.device}')
print(f"Using device {device}")
# Create directories
run_name = args.run_name if args.run_name is not None else args.input_dir.parent.name
experiment_dir = args.output_dir / run_name
images_save_path = experiment_dir / "images"
meshes_save_path = experiment_dir / "meshes"
shaders_save_path = experiment_dir / "shaders"
images_save_path.mkdir(parents=True, exist_ok=True)
meshes_save_path.mkdir(parents=True, exist_ok=True)
shaders_save_path.mkdir(parents=True, exist_ok=True)
# Save args for this execution
with open(experiment_dir / "args.txt", "w") as text_file:
print(f"{args}", file=text_file)
# Read the views
views = read_views(args.input_dir, scale=args.image_scale, device=device)
# Obtain the initial mesh and compute its connectivity
mesh_initial: Mesh = None
if args.initial_mesh in mesh_generator_names:
# Use args.initial_mesh as mesh generator name
if args.input_bbox is None:
raise RuntimeError("Generated meshes require a bounding box.")
mesh_initial = generate_mesh(args.initial_mesh, views, AABB.load(args.input_bbox), device=device)
else:
# Use args.initial_mesh as path to the mesh
mesh_initial = read_mesh(args.initial_mesh, device=device)
mesh_initial.compute_connectivity()
# Load the bounding box or create it from the mesh vertices
if args.input_bbox is not None:
aabb = AABB.load(args.input_bbox)
else:
aabb = AABB(mesh_initial.vertices.cpu().numpy())
aabb.save(experiment_dir / "bbox.txt")
# Apply the normalizing affine transform, which maps the bounding box to
# a 2-cube centered at (0, 0, 0), to the views, the mesh, and the bounding box
space_normalization = SpaceNormalization(aabb.corners)
views = space_normalization.normalize_views(views)
mesh_initial = space_normalization.normalize_mesh(mesh_initial)
aabb = space_normalization.normalize_aabb(aabb)
# Configure the renderer
renderer = Renderer(device=device)
renderer.set_near_far(views, torch.from_numpy(aabb.corners).to(device), epsilon=0.5)
# Visualize the inputs before optimization
visualize_views(views, show=False, save_path=experiment_dir / "views.png")
visualize_mesh_as_overlay(renderer, views, mesh_initial, show=False, save_path=experiment_dir / "views_overlay.png")
# Configure the view sampler
view_sampler = ViewSampler(views=views, **ViewSampler.get_parameters(args))
# Create the optimizer for the vertex positions
# (we optimize offsets from the initial vertex position)
lr_vertices = args.lr_vertices
vertex_offsets = torch.zeros_like(mesh_initial.vertices)
vertex_offsets.requires_grad = True
optimizer_vertices = torch.optim.Adam([vertex_offsets], lr=lr_vertices)
# Create the optimizer for the neural shader
shader = NeuralShader(hidden_features_layers=args.hidden_features_layers,
hidden_features_size=args.hidden_features_size,
fourier_features=args.fourier_features,
activation=args.activation,
fft_scale=args.fft_scale,
last_activation=torch.nn.Sigmoid,
device=device)
optimizer_shader = torch.optim.Adam(shader.parameters(), lr=args.lr_shader)
# Initialize the loss weights and losses
loss_weights = {
"mask": args.weight_mask,
"normal": args.weight_normal,
"laplacian": args.weight_laplacian,
"shading": args.weight_shading
}
losses = {k: torch.tensor(0.0, device=device) for k in loss_weights}
progress_bar = tqdm(range(1, args.iterations + 1))
for iteration in progress_bar:
progress_bar.set_description(desc=f'Iteration {iteration}')
if iteration in args.upsample_iterations:
# Upsample the mesh by remeshing the surface with half the average edge length
e0, e1 = mesh.edges.unbind(1)
average_edge_length = torch.linalg.norm(mesh.vertices[e0] - mesh.vertices[e1], dim=-1).mean()
v_upsampled, f_upsampled = remesh_botsch(mesh.vertices.cpu().detach().numpy().astype(np.float64), mesh.indices.cpu().numpy().astype(np.int32), h=float(average_edge_length/2))
v_upsampled = np.ascontiguousarray(v_upsampled)
f_upsampled = np.ascontiguousarray(f_upsampled)
mesh_initial = Mesh(v_upsampled, f_upsampled, device=device)
mesh_initial.compute_connectivity()
# Adjust weights and step size
loss_weights['laplacian'] *= 4
loss_weights['normal'] *= 4
lr_vertices *= 0.75
# Create a new optimizer for the vertex offsets
vertex_offsets = torch.zeros_like(mesh_initial.vertices)
vertex_offsets.requires_grad = True
optimizer_vertices = torch.optim.Adam([vertex_offsets], lr=lr_vertices)
# Deform the initial mesh
mesh = mesh_initial.with_vertices(mesh_initial.vertices + vertex_offsets)
# Sample a view subset
views_subset = view_sampler(views)
# Render the mesh from the views
# Perform antialiasing here because we cannot antialias after shading if we only shade a some of the pixels
gbuffers = renderer.render(views_subset, mesh, channels=['mask', 'position', 'normal'], with_antialiasing=True)
# Combine losses and weights
if loss_weights['mask'] > 0:
losses['mask'] = mask_loss(views_subset, gbuffers)
if loss_weights['normal'] > 0:
losses['normal'] = normal_consistency_loss(mesh)
if loss_weights['laplacian'] > 0:
losses['laplacian'] = laplacian_loss(mesh)
if loss_weights['shading'] > 0:
losses['shading'] = shading_loss(views_subset, gbuffers, shader=shader, shading_percentage=args.shading_percentage)
loss = torch.tensor(0., device=device)
for k, v in losses.items():
loss += v * loss_weights[k]
# Optimize
optimizer_vertices.zero_grad()
optimizer_shader.zero_grad()
loss.backward()
optimizer_vertices.step()
optimizer_shader.step()
progress_bar.set_postfix({'loss': loss.detach().cpu()})
# Visualizations
if (args.visualization_frequency > 0) and shader and (iteration == 1 or iteration % args.visualization_frequency == 0):
import matplotlib.pyplot as plt
with torch.no_grad():
use_fixed_views = len(args.visualization_views) > 0
view_indices = args.visualization_views if use_fixed_views else [np.random.choice(list(range(len(views_subset))))]
for vi in view_indices:
debug_view = views[vi] if use_fixed_views else views_subset[vi]
debug_gbuffer = renderer.render([debug_view], mesh, channels=['mask', 'position', 'normal'], with_antialiasing=True)[0]
position = debug_gbuffer["position"]
normal = debug_gbuffer["normal"]
view_direction = torch.nn.functional.normalize(debug_view.camera.center - position, dim=-1)
# Save the shaded rendering
shaded_image = shader(position, normal, view_direction) * debug_gbuffer["mask"] + (1-debug_gbuffer["mask"])
shaded_path = (images_save_path / str(vi) / "shaded") if use_fixed_views else (images_save_path / "shaded")
shaded_path.mkdir(parents=True, exist_ok=True)
plt.imsave(shaded_path / f'neuralshading_{iteration}.png', shaded_image.cpu().numpy())
# Save a normal map in camera space
normal_path = (images_save_path / str(vi) / "normal") if use_fixed_views else (images_save_path / "normal")
normal_path.mkdir(parents=True, exist_ok=True)
R = torch.tensor([[1, 0, 0], [0, -1, 0], [0, 0, -1]], device=device, dtype=torch.float32)
normal_image = (0.5*(normal @ debug_view.camera.R.T @ R.T + 1)) * debug_gbuffer["mask"] + (1-debug_gbuffer["mask"])
plt.imsave(normal_path / f'neuralshading_{iteration}.png', normal_image.cpu().numpy())
if (args.save_frequency > 0) and (iteration == 1 or iteration % args.save_frequency == 0):
with torch.no_grad():
mesh_for_writing = space_normalization.denormalize_mesh(mesh.detach().to('cpu'))
write_mesh(meshes_save_path / f"mesh_{iteration:06d}.obj", mesh_for_writing)
shader.save(shaders_save_path / f'shader_{iteration:06d}.pt')
mesh_for_writing = space_normalization.denormalize_mesh(mesh.detach().to('cpu'))
write_mesh(meshes_save_path / f"mesh_{args.iterations:06d}.obj", mesh_for_writing)
if shader is not None:
shader.save(shaders_save_path / f'shader_{args.iterations:06d}.pt')