diff --git a/code/comparison experiments/IGBT/DPA/DPA.py b/code/comparison experiments/IGBT/DPA/DPA.py new file mode 100644 index 0000000..b94cca3 --- /dev/null +++ b/code/comparison experiments/IGBT/DPA/DPA.py @@ -0,0 +1,445 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Mar 20 16:46:05 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 19 22:07:49 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 19 20:41:41 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sat Mar 18 13:04:56 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 16:49:17 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 16:26:02 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 14:28:22 2022 + +@author: Administrator +""" +# -*- coding: utf-8 -*- +""" +Created on Sun Jul 31 18:17:31 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sat Jul 30 14:50:53 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Thu Jul 28 14:55:56 2022 + +@author: Administrator + +""" + +########相比fitting1 多了一个纵轴的自由度 +#########采用 新曲线 计算阈值到达时间 + ######################################## 小于门槛值 到达寿命 + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + + +shed=-5.5 + +import numpy as np +import pandas as pd +import os +import pickle +import scipy as sp +import datetime + + +import numpy as np + +import scipy as sp + +import math + +from numpy import matmul as mm +from math import sqrt,pi,log, exp + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + +from scipy.stats import norm + + +import scipy.io as scio + + + + +print(os.path.abspath(os.path.join(os.getcwd(), "../.."))) +last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../..")) + +print(os.path.abspath(os.path.join(os.getcwd(), ".."))) +last_path=os.path.abspath(os.path.join(os.getcwd(), "..")) + +print(os.path.abspath(os.path.join(os.getcwd(), "../../.."))) +last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) + + +print(os.path.abspath(os.path.join(os.getcwd(), "../../../.."))) +last_last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../../..")) + + + + + +def get_data_list(): + + + CS2_35=[1.0522460048000002, 2.219000064, 2.2502500608, 2.2502500608, 2.219000064, 2.219000064, 2.1877500671999996, 2.7502500095999998, 2.7502500095999998, 2.7190000128, 3.2189999616, 3.2502499584, 3.2189999616, 3.2502499584, 3.7189999104, 3.6877499136, 3.7189999104, 3.7189999104, 3.7189999104, 3.6877499136, 3.7189999104, 3.6564999167999996, 3.6877499136, 3.6877499136, 4.1877498624, 4.1877498624, 4.2189998592, 4.1877498624, 4.1877498624, 4.1877498624, 4.2189998592, 4.1877498624, 4.2189998592, 4.1877498624, 4.1877498624, 4.1877498624, 4.1877498624, 4.1877498624, 4.6877498112, 4.6564998144, 4.6877498112, 4.7189998079999995, 4.6877498112, 4.6252498176, 4.6564998144, 4.6564998144, 4.6564998144, 4.6564998144, 4.6564998144, 4.6564998144, 4.6252498176, 5.156499763199999, 5.156499763199999, 5.156499763199999, 5.1252497664, 5.0939997696, 5.156499763199999, 5.156499763199999, 5.1252497664, 5.0627497728, 5.0627497728, 4.8439997952, 5.0939997696, 5.1249997824, 5.1562497791999995, 5.2187497728, 5.187499776, 5.2187497728, 5.4062497536, 5.4687497472, 5.374999756799999, 4.6249998336, 5.187499776, 5.1562497791999995, 5.1249997824, 5.2499997696000005, 5.1249997824, 5.187499776, 5.2812497664, 5.2812497664, 5.1562497791999995, 5.2812497664, 5.2187497728, 5.3124997632, 5.2187497728, 5.1562497791999995, 5.2812497664, 5.34374976, 5.2187497728, 5.34374976, 5.2499997696000005, 5.2187497728, 5.4374997504, 5.374999756799999, 5.2812497664, 5.2812497664, 5.374999756799999, 5.34374976, 5.812499711999999, 5.374999756799999, 5.2499997696000005, 5.2812497664, 5.2499997696000005, 5.2499997696000005, 5.2499997696000005, 5.2499997696000005, 5.4062497536, 5.374999756799999, 5.374999756799999, 1.750000128] + CS2_36=[1.0473631920000002, 2.250000064, 2.2187500672000002, 2.1875000704, 2.250000064, 2.2187500672000002, 2.2812500608, 2.2187500672000002, 2.2187500672000002, 2.2187500672000002, 2.1875000704, 2.1875000704, 3.2187499647999998, 3.187499968, 3.3124999552, 3.187499968, 3.2187499647999998, 3.1562499712, 3.1562499712, 3.1562499712, 3.65624992, 3.65624992, 3.6874999168, 3.6874999168, 3.6249999232, 4.1562498688, 4.124999872, 4.124999872, 4.124999872, 4.5624998272, 4.593749824, 4.593749824, 4.5624998272, 4.593749824, 4.593749824, 4.593749824, 4.624999820799999, 4.593749824, 4.593749824, 5.0937497728, 5.062499776, 4.9999997824, 5.062499776, 5.0937497728, 5.1874997632, 5.1249997696000005, 5.1249997696000005, 5.062499776, 5.062499776, 5.062499776, 5.0312497791999995, 5.062499776, 5.0937497728, 4.7187498112, 5.249999756799999, 5.1562497664, 5.062499776, 5.5624997248, 5.6249997184, 5.3124997504, 5.249999756799999, 5.249999756799999, 5.1562497664, 5.1874997632, 6.1249996672, 5.6999997184, 5.1749997312, 5.4499996928000005, 6.2557499904, 6.2557499904, 6.1932499968, 6.5994999552, 6.3494999808, 6.3182499839999995, 6.4119999744, 6.3807499776, 6.6932499456, 6.2869999872, 6.6307499519999995, 6.4119999744, 6.4432499712, 6.2244999936, 6.2869999872, 6.2244999936, 6.4119999744, 6.3807499776, 6.3494999808, 6.162, 6.162, 6.5994999552, 6.1932499968, 6.1307500032, 6.1307500032, 6.1307500032, 6.1307500032, 6.1307500032, 2.7557503488, 2.7557503488, 2.6932503552] + CS2_37=[1.0864256944000001, 3.2965001088, 2.79650016, 2.7340001664, 2.6715001728, 2.6090001792, 2.6090001792, 2.6090001792, 2.5465001856000002, 2.5465001856000002, 2.9840001408, 3.6090000768, 3.2965001088, 3.421500096, 3.3590001024, 3.3590001024, 3.3590001024, 3.2965001088, 3.3590001024, 3.421500096, 3.421500096, 3.3590001024, 3.8590000512, 3.9840000384, 3.9215000448, 3.8590000512, 4.359, 4.4214999936, 4.359, 4.2965000064, 4.2965000064, 4.1715000192, 4.2965000064, 4.2965000064, 4.7964999552, 4.7339999616, 4.7964999552, 4.7964999552, 4.7964999552, 4.7964999552, 4.7339999616, 4.7964999552, 4.7964999552, 4.7339999616, 4.7964999552, 4.7964999552, 4.6089999744, 4.7339999616, 4.7964999552, 4.7339999616, 4.7339999616, 4.7339999616, 4.7964999552, 4.7339999616, 4.7339999616, 4.7964999552, 4.6089999744, 4.671499968, 4.671499968, 4.7339999616, 4.6089999744, 4.6089999744, 4.7339999616, 4.7964999552, 4.7339999616, 4.983999936, 4.983999936, 4.7964999552, 4.9214999424, 5.2339999104, 4.983999936, 5.0464999295999995, 4.983999936, 4.9685000576, 4.9377500544, 5.5002499968, 5.7189999744, 5.805000038399999, 6.5237499647999995, 5.7737500416, 6.5237499647999995, 6.5237499647999995, 6.0550000128, 5.4925000704, 5.7425000448, 6.4612499712, 6.7112499456, 6.0550000128, 5.9612500224, 6.0862500096, 6.336249984, 6.2737499904, 6.492499968, 5.9300000256, 5.9925000191999995, 5.9925000191999995, 6.023750015999999, 5.9925000191999995, 5.805000038399999, 6.117500006399999, 6.1487500032, 6.1487500032, 6.1487500032, 6.1487500032, 2.8362503423999996, 2.8050003456, 2.8362503423999996, 3.2737502976] + CS2_38=[2.4536132784, 2.4609374976, 2.2505000704, 2.1880000768000003, 2.15675008, 2.4380000512000004, 2.2817500672, 2.2505000704, 2.781750016, 2.7505000192, 2.5942500352, 2.7505000192, 2.7505000192, 2.6567500288000003, 2.781750016, 2.7505000192, 2.6880000256, 3.250499968, 3.250499968, 3.250499968, 3.250499968, 3.2817499648000004, 3.250499968, 3.250499968, 3.2192499712, 3.2192499712, 3.250499968, 3.250499968, 3.71924992, 3.71924992, 3.6879999232, 4.2504998656, 4.2192498688, 4.2192498688, 4.2192498688, 4.2192498688, 4.2192498688, 4.2192498688, 4.6879998208, 4.7192498176, 4.7192498176, 4.6879998208, 4.7192498176, 4.7192498176, 4.7192498176, 4.656749824, 4.6879998208, 4.5942498304, 4.7192498176, 4.6879998208, 4.6879998208, 5.2192497664, 5.2192497664, 5.1879997696, 5.0004997888, 5.3129997568, 5.1879997696, 5.250499763200001, 5.0629997824, 5.3129997568, 5.28174976, 5.28174976, 5.250499763200001, 5.3129997568, 5.3129997568, 5.250499763200001, 5.1567497728, 5.3129997568, 5.594249727999999, 5.9379996928, 6.281749657600001, 6.0004996863999995, 5.906749696, 5.906749696, 6.0942496768000005, 5.9692496896, 5.7817497088, 5.906749696, 5.7817497088, 5.875499699200001, 5.656749721600001, 5.125499776, 6.0942496768000005, 5.8129997056, 5.875499699200001, 5.9379996928, 5.875499699200001, 5.906749696, 5.8442497024, 5.9379996928, 5.8129997056, 5.906749696, 5.8442497024, 5.8442497024, 5.906749696, 6.0942496768000005, 5.9379996928, 5.9379996928, 5.9379996928, 5.9379996928, 6.3129996544, 6.281749657600001, 5.9692496896, 2.7505000192, 2.7505000192, 2.7505000192] + + + + + + + + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(CS2_35, linewidth=1,c='b',label="Device2") + ax.plot(CS2_36, linewidth=1,c='g',label="Device3") + ax.plot(CS2_37, linewidth=1,c='y',label="Device4") + ax.plot(CS2_38, linewidth=1,c='r',label="Device5") + + # 显示图形 + font1 = { + 'weight' : 'normal', + 'size' : 14, + } + + + #设置横纵坐标的名称以及对应字体格式 + font2 = {#'family' : 'Times New Roman', + 'weight' : 'normal', + 'size' : 30, + } + + plt.xlabel('Cycle',font1) #X轴标签 + plt.ylabel("Capacity (Ah)",font1) #Y轴标签 + plt.legend() + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_IGBT_curves_comparision.eps',dpi=800,format='eps',bbox_inches = 'tight') + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_IGBT_curves_comparision.png',dpi=800,format='png',bbox_inches = 'tight') + plt.show() + + return CS2_35[:-5],CS2_36[:-5],CS2_37[:-5],CS2_38[:-5] + + + +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() + + +print(CS2_35) + +CS2_35=list(-(np.array(CS2_35)-CS2_35[0])) +CS2_36=list(-(np.array(CS2_36)-CS2_36[0])) +CS2_37=list(-(np.array(CS2_37)-CS2_37[0])) +CS2_38=list(-(np.array(CS2_38)-CS2_38[0])) + +print(CS2_35) + + +print(CS2_35[0]) +print(CS2_36[0]) +print(CS2_37[0]) +print(CS2_38[0]) + +def get_health_list(CS2_35,shed): + for i in range(len(CS2_35)): + if CS2_35[i]Y_test[i]: + s=s+math.exp((Y_pred[i]-Y_test[i])/10)-1 + else: + s=s+math.exp((Y_test[i]-Y_pred[i])/13)-1 + # print('unbalanced_penalty_score{}'.format(s)) + return s + +def error_range(Y_test,Y_pred) : + Y_test =np.array(Y_test) + Y_pred =np.array(Y_pred) + + error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + # print('error range{}'.format(error_range)) + return error_range + + +def error_list(Y_test,Y_pred) : + Y_test =np.array(Y_test) + Y_pred =np.array(Y_pred) + + error_list=Y_test-Y_pred + # Y_test =np.array(Y_test) + # Y_pred =np.array(Y_pred) + + # error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + # print('error range{}'.format(error_range)) + return list(error_list) + + + +# def predcition(targets,predictions): +# targets=np.array(targets) +# predictions=np.array(predictions) + +# smape = (1 / len(predictions)) * np.sum(2 * np.abs(predictions - targets) / (np.abs(predictions) + np.abs(targets))) * 100 + +# return 100-smape + +def predcition(targets,predictions): + targets=np.array(targets) + predictions=np.array(predictions) + + + # targets=np.array(targets) + # predictions=np.array(predictions) + + + + smape = np.sum( np.abs(predictions - targets)) /np.sum( np.abs( targets)) * 100 + print(np.sum( np.abs(predictions - targets))) + + print(np.sum( np.abs( targets))) + + print(smape) + y=100-smape + + # print(y) + return y + +print(list((error_list(groud_truth[-min_len:],Si[-min_len:]),error_list(groud_truth[-min_len:],Zhang[-min_len:]),error_list(groud_truth[-min_len:],DCNN[-min_len:]),error_list(groud_truth[-min_len:],TaFCN[-min_len:]),error_list(groud_truth[-min_len:],Our[-min_len:])))) + +print(list((rmse(Si_error[-min_len:]),rmse(Zhang_error[-min_len:]),rmse(DCNN_error[-min_len:]),rmse(TaFCN_error[-min_len:]),rmse(Our_error[-min_len:])))) +print(list((aae(Si_error[-min_len:]),aae(Zhang_error[-min_len:]),aae(DCNN_error[-min_len:]),aae(TaFCN_error[-min_len:]),aae(Our_error[-min_len:])))) +print(list((score(groud_truth[-min_len:],Si[-min_len:]),score(groud_truth[-min_len:],Zhang[-min_len:]),score(groud_truth[-min_len:],DCNN[-min_len:]),score(groud_truth[-min_len:],TaFCN[-min_len:]),score(groud_truth[-min_len:],Our[-min_len:])))) +print(list((error_range(groud_truth[-min_len:],Si[-min_len:]),error_range(groud_truth[-min_len:],Zhang[-min_len:]),error_range(groud_truth[-min_len:],DCNN[-min_len:]),error_range(groud_truth[-min_len:],TaFCN[-min_len:]),error_range(groud_truth[-min_len:],Our[-min_len:])))) + + + + + +print(list((predcition(groud_truth[-min_len:],Si[-min_len:]),predcition(groud_truth[-min_len:],Zhang[-min_len:]),predcition(groud_truth[-min_len:],DCNN[-min_len:]),predcition(groud_truth[-min_len:],TaFCN[-min_len:]),predcition(groud_truth[-min_len:],Our[-min_len:])))) + +# print +# 显示图形 +font1 = { +'weight' : 'normal', +'size' : 14, +} + + + #设置横纵坐标的名称以及对应字体格式 +font2 = {#'family' : 'Times New Roman', +'weight' : 'normal', +'size' : 30, +} +# error_rate=0.2 +# plt.fill_between(np.arange(min_len,0,-1), np.array(np.arange(min_len,0,-1))*(error_rate), np.arange(min_len,0,-1)*0,color="#CCCCCC")# color="#CCEEFF") +plt.fill_between(np.arange(min_len,0,-1), np.array(np.arange(min_len,0,-1))*(error_rate), np.arange(min_len,0,-1)*0,color="#CCCCCC",label='Error band (±{:.0%})'.format(error_rate))# color="#CCEEFF") +plt.fill_between(np.arange(min_len,0,-1), np.array(np.arange(min_len,0,-1))*(error_rate), np.array(np.arange(min_len,0,-1))*(error_rate_1),color="#E7E7E7",label='Error band (±{:.0%})'.format(error_rate_1))# color="#CCEEFF") +plt.xlabel('Actual RUL (cycle)',font1) #X轴标签 +plt.ylabel("Absolute prediction error (cycle)",font1) #Y轴标签 +plt.grid(alpha=0.5,linestyle='-.') #网格线,更好看 +plt.gca().invert_xaxis() +plt.legend() +plt.savefig(last_last_last_path+r'\figure\by_code\The_absolute_error_of_predicted_RUL_IGBT_3_4.eps',dpi=800,format='eps',bbox_inches = 'tight') +plt.savefig(last_last_last_path+r'\figure\by_code\The_absolute_error_of_predicted_RUL_IGBT_3_4.png',dpi=800,format='png',bbox_inches = 'tight') +plt.show() + + diff --git a/code/comparison experiments/IGBT/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt b/code/comparison experiments/IGBT/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt new file mode 100644 index 0000000..c84ed61 --- /dev/null +++ b/code/comparison experiments/IGBT/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt @@ -0,0 +1,806 @@ +2023-03-22 19:18:03,735 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,736 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,825 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,826 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,460 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,461 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,553 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,553 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:20:00,213 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. + +2023-03-22 19:20:00,235 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:3980: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead. + +2023-03-22 19:20:00,241 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. + +2023-03-22 19:20:00,258 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead. + +2023-03-22 19:20:00,312 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead. + +2023-03-22 19:20:00,313 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead. + +2023-03-22 19:20:00,314 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:186: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead. + +2023-03-22 19:20:02,670 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. + +2023-03-22 19:20:02,671 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead. + +2023-03-22 19:20:02,901 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead. + +2023-03-22 19:20:02,940 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead. + +2023-03-22 19:20:02,990 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:133: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. + +2023-03-22 19:20:03,741 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead. + +2023-03-22 19:20:03,983 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\ops\math_grad.py:1424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. +Instructions for updating: +Use tf.where in 2.0, which has the same broadcast rule as np.where +2023-03-22 19:20:04,011 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead. + +2023-03-22 19:20:04,216 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead. + +2023-03-22 19:22:47,451 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,452 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,545 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,546 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:52,870 - matplotlib.font_manager - DEBUG -findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0. +2023-03-22 19:22:52,871 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,871 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,872 - matplotlib.font_manager - DEBUG -findfont: score() = 1.05 +2023-03-22 19:22:52,873 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,874 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,874 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,875 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,875 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,877 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,877 - matplotlib.font_manager - DEBUG -findfont: score() = 0.33499999999999996 +2023-03-22 19:22:52,878 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,878 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,879 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,880 - matplotlib.font_manager - DEBUG -findfont: score() = 0.05 +2023-03-22 19:22:52,880 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,882 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,882 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,883 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,883 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,885 - matplotlib.font_manager - DEBUG -findfont: score() = 1.335 +2023-03-22 19:22:52,885 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,886 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,886 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,887 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,887 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,888 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,890 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,890 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,891 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,891 - matplotlib.font_manager - DEBUG -findfont: score() = 10.43 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,893 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,893 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,894 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,894 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,895 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,895 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,896 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,896 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,897 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,897 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,899 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,899 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,900 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,900 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 11.525 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,902 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,902 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,903 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,903 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,904 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,904 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:52,905 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,905 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,906 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,906 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,908 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,908 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,909 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,909 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,911 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,911 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,912 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,912 - matplotlib.font_manager - DEBUG -findfont: score() = 10.44 +2023-03-22 19:22:52,913 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,913 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 11.25 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,915 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,915 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,916 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,916 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,917 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,917 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,918 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,918 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,920 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,920 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,921 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,921 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,923 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:52,923 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,925 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,925 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:52,926 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,926 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,928 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,928 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,929 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,931 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,931 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,932 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,932 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,933 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,933 - matplotlib.font_manager - DEBUG -findfont: score() = 3.9713636363636367 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,935 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,935 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,936 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,936 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 3.6863636363636365 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,938 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 4.971363636363637 +2023-03-22 19:22:52,940 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,940 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,941 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,941 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,943 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,943 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,944 - matplotlib.font_manager - DEBUG -findfont: score() = 6.888636363636364 +2023-03-22 19:22:52,944 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,946 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,946 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,947 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,947 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,948 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,948 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,949 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,950 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,950 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,952 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,952 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,954 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,954 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,955 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,955 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,957 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,957 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,959 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,959 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,960 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,960 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,961 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,961 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,962 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,962 - matplotlib.font_manager - DEBUG -findfont: score() = 7.8986363636363635 +2023-03-22 19:22:52,963 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,963 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,965 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,965 - matplotlib.font_manager - DEBUG -findfont: score() = 6.698636363636363 +2023-03-22 19:22:52,966 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,966 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,968 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,968 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,969 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,969 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,970 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,970 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,972 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,972 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,973 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,973 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,975 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,975 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,976 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,976 - matplotlib.font_manager - DEBUG -findfont: score() = 11.43 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,978 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,979 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,979 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,980 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,980 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,981 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,981 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,983 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,983 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,984 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,984 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,986 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,986 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,987 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,987 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,989 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,989 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,991 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,991 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,992 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,992 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,994 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,995 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,995 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,996 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,996 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,997 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,997 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,998 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,998 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,000 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,000 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,001 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,001 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,003 - matplotlib.font_manager - DEBUG -findfont: score() = 10.344999999999999 +2023-03-22 19:22:53,003 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,004 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,004 - matplotlib.font_manager - DEBUG -findfont: score() = 11.525 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,006 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,006 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 4.6863636363636365 +2023-03-22 19:22:53,008 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,008 - matplotlib.font_manager - DEBUG -findfont: score() = 7.698636363636363 +2023-03-22 19:22:53,009 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,009 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,010 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,010 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,011 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:53,011 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,012 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,012 - matplotlib.font_manager - DEBUG -findfont: score() = 6.413636363636363 +2023-03-22 19:22:53,013 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,013 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,014 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,014 - matplotlib.font_manager - DEBUG -findfont: score() = 7.413636363636363 +2023-03-22 19:22:53,015 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,015 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,016 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,016 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,018 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,018 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,020 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,020 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,021 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,021 - matplotlib.font_manager - DEBUG -findfont: score() = 7.613636363636363 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,023 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,023 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:53,024 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,024 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,025 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,025 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,026 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,026 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,027 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,027 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,028 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,028 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,029 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,029 - matplotlib.font_manager - DEBUG -findfont: score() = 6.8986363636363635 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,031 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,031 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,032 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,032 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 6.613636363636363 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,034 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,034 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:53,036 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,036 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,037 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,037 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,039 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,039 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,040 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,042 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,057 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,058 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,058 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:53,060 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,060 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,063 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 11.535 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,065 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,065 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,067 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,067 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,069 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,069 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,070 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,070 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,071 - matplotlib.font_manager - DEBUG -findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0 to DejaVu Sans ('C:\\Users\\Administrator\\anaconda3\\envs\\python36\\lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +2023-03-22 19:23:05,774 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,776 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,778 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,779 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,781 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,782 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,783 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,784 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,785 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,786 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,787 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,788 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,789 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,791 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,792 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,793 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,794 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,795 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,796 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,798 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,799 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:24:47,221 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,222 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,315 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,316 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,075 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,075 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,162 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,163 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,081 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,082 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,176 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,177 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,240 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,240 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,332 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,333 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,010 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,010 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,097 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,097 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,407 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,408 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,505 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,506 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,126 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,126 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,215 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,216 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,143 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,144 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,243 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,244 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,337 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,338 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,432 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,433 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,170 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,170 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,264 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,265 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,578 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,579 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,674 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,675 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,053 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,054 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,144 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,145 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:20,912 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:20,913 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:21,006 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:21,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,422 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,423 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,515 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,517 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,455 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,456 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,550 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,551 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,408 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,409 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,496 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,497 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,883 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,884 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,970 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,971 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:51,988 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:51,989 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:52,080 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:52,081 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:13,943 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:13,944 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:14,041 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:14,042 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,890 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,891 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,983 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,985 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:44,983 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:44,984 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:45,071 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:45,072 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:58,916 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:58,917 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:59,006 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:59,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,073 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,074 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,166 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,168 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:19,894 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:19,897 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:20,005 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:20,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. diff --git a/code/comparison experiments/IGBT/tafcn2022/TaFCN.py b/code/comparison experiments/IGBT/tafcn2022/TaFCN.py new file mode 100644 index 0000000..0c80943 --- /dev/null +++ b/code/comparison experiments/IGBT/tafcn2022/TaFCN.py @@ -0,0 +1,647 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Mar 22 16:37:59 2023 + +@author: Administrator +""" +########正负 门槛值 大于小于 + + + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + + + + +import numpy as np +import pandas as pd +import os +import pickle +import scipy as sp +import datetime + + + +timestep=1 + +shed=5.5 + + + +print(os.path.abspath(os.path.join(os.getcwd(), "../.."))) +last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../..")) + +print(os.path.abspath(os.path.join(os.getcwd(), ".."))) +last_path=os.path.abspath(os.path.join(os.getcwd(), "..")) + +print(os.path.abspath(os.path.join(os.getcwd(), "../../.."))) +last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) + + +print(os.path.abspath(os.path.join(os.getcwd(), "../../../.."))) +last_last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../../..")) + + + + + +def get_data_list(): + + + CS2_35=[1.0522460048000002, 2.219000064, 2.2502500608, 2.2502500608, 2.219000064, 2.219000064, 2.1877500671999996, 2.7502500095999998, 2.7502500095999998, 2.7190000128, 3.2189999616, 3.2502499584, 3.2189999616, 3.2502499584, 3.7189999104, 3.6877499136, 3.7189999104, 3.7189999104, 3.7189999104, 3.6877499136, 3.7189999104, 3.6564999167999996, 3.6877499136, 3.6877499136, 4.1877498624, 4.1877498624, 4.2189998592, 4.1877498624, 4.1877498624, 4.1877498624, 4.2189998592, 4.1877498624, 4.2189998592, 4.1877498624, 4.1877498624, 4.1877498624, 4.1877498624, 4.1877498624, 4.6877498112, 4.6564998144, 4.6877498112, 4.7189998079999995, 4.6877498112, 4.6252498176, 4.6564998144, 4.6564998144, 4.6564998144, 4.6564998144, 4.6564998144, 4.6564998144, 4.6252498176, 5.156499763199999, 5.156499763199999, 5.156499763199999, 5.1252497664, 5.0939997696, 5.156499763199999, 5.156499763199999, 5.1252497664, 5.0627497728, 5.0627497728, 4.8439997952, 5.0939997696, 5.1249997824, 5.1562497791999995, 5.2187497728, 5.187499776, 5.2187497728, 5.4062497536, 5.4687497472, 5.374999756799999, 4.6249998336, 5.187499776, 5.1562497791999995, 5.1249997824, 5.2499997696000005, 5.1249997824, 5.187499776, 5.2812497664, 5.2812497664, 5.1562497791999995, 5.2812497664, 5.2187497728, 5.3124997632, 5.2187497728, 5.1562497791999995, 5.2812497664, 5.34374976, 5.2187497728, 5.34374976, 5.2499997696000005, 5.2187497728, 5.4374997504, 5.374999756799999, 5.2812497664, 5.2812497664, 5.374999756799999, 5.34374976, 5.812499711999999, 5.374999756799999, 5.2499997696000005, 5.2812497664, 5.2499997696000005, 5.2499997696000005, 5.2499997696000005, 5.2499997696000005, 5.4062497536, 5.374999756799999, 5.374999756799999, 1.750000128] + CS2_36=[1.0473631920000002, 2.250000064, 2.2187500672000002, 2.1875000704, 2.250000064, 2.2187500672000002, 2.2812500608, 2.2187500672000002, 2.2187500672000002, 2.2187500672000002, 2.1875000704, 2.1875000704, 3.2187499647999998, 3.187499968, 3.3124999552, 3.187499968, 3.2187499647999998, 3.1562499712, 3.1562499712, 3.1562499712, 3.65624992, 3.65624992, 3.6874999168, 3.6874999168, 3.6249999232, 4.1562498688, 4.124999872, 4.124999872, 4.124999872, 4.5624998272, 4.593749824, 4.593749824, 4.5624998272, 4.593749824, 4.593749824, 4.593749824, 4.624999820799999, 4.593749824, 4.593749824, 5.0937497728, 5.062499776, 4.9999997824, 5.062499776, 5.0937497728, 5.1874997632, 5.1249997696000005, 5.1249997696000005, 5.062499776, 5.062499776, 5.062499776, 5.0312497791999995, 5.062499776, 5.0937497728, 4.7187498112, 5.249999756799999, 5.1562497664, 5.062499776, 5.5624997248, 5.6249997184, 5.3124997504, 5.249999756799999, 5.249999756799999, 5.1562497664, 5.1874997632, 6.1249996672, 5.6999997184, 5.1749997312, 5.4499996928000005, 6.2557499904, 6.2557499904, 6.1932499968, 6.5994999552, 6.3494999808, 6.3182499839999995, 6.4119999744, 6.3807499776, 6.6932499456, 6.2869999872, 6.6307499519999995, 6.4119999744, 6.4432499712, 6.2244999936, 6.2869999872, 6.2244999936, 6.4119999744, 6.3807499776, 6.3494999808, 6.162, 6.162, 6.5994999552, 6.1932499968, 6.1307500032, 6.1307500032, 6.1307500032, 6.1307500032, 6.1307500032, 2.7557503488, 2.7557503488, 2.6932503552] + CS2_37=[1.0864256944000001, 3.2965001088, 2.79650016, 2.7340001664, 2.6715001728, 2.6090001792, 2.6090001792, 2.6090001792, 2.5465001856000002, 2.5465001856000002, 2.9840001408, 3.6090000768, 3.2965001088, 3.421500096, 3.3590001024, 3.3590001024, 3.3590001024, 3.2965001088, 3.3590001024, 3.421500096, 3.421500096, 3.3590001024, 3.8590000512, 3.9840000384, 3.9215000448, 3.8590000512, 4.359, 4.4214999936, 4.359, 4.2965000064, 4.2965000064, 4.1715000192, 4.2965000064, 4.2965000064, 4.7964999552, 4.7339999616, 4.7964999552, 4.7964999552, 4.7964999552, 4.7964999552, 4.7339999616, 4.7964999552, 4.7964999552, 4.7339999616, 4.7964999552, 4.7964999552, 4.6089999744, 4.7339999616, 4.7964999552, 4.7339999616, 4.7339999616, 4.7339999616, 4.7964999552, 4.7339999616, 4.7339999616, 4.7964999552, 4.6089999744, 4.671499968, 4.671499968, 4.7339999616, 4.6089999744, 4.6089999744, 4.7339999616, 4.7964999552, 4.7339999616, 4.983999936, 4.983999936, 4.7964999552, 4.9214999424, 5.2339999104, 4.983999936, 5.0464999295999995, 4.983999936, 4.9685000576, 4.9377500544, 5.5002499968, 5.7189999744, 5.805000038399999, 6.5237499647999995, 5.7737500416, 6.5237499647999995, 6.5237499647999995, 6.0550000128, 5.4925000704, 5.7425000448, 6.4612499712, 6.7112499456, 6.0550000128, 5.9612500224, 6.0862500096, 6.336249984, 6.2737499904, 6.492499968, 5.9300000256, 5.9925000191999995, 5.9925000191999995, 6.023750015999999, 5.9925000191999995, 5.805000038399999, 6.117500006399999, 6.1487500032, 6.1487500032, 6.1487500032, 6.1487500032, 2.8362503423999996, 2.8050003456, 2.8362503423999996, 3.2737502976] + CS2_38=[2.4536132784, 2.4609374976, 2.2505000704, 2.1880000768000003, 2.15675008, 2.4380000512000004, 2.2817500672, 2.2505000704, 2.781750016, 2.7505000192, 2.5942500352, 2.7505000192, 2.7505000192, 2.6567500288000003, 2.781750016, 2.7505000192, 2.6880000256, 3.250499968, 3.250499968, 3.250499968, 3.250499968, 3.2817499648000004, 3.250499968, 3.250499968, 3.2192499712, 3.2192499712, 3.250499968, 3.250499968, 3.71924992, 3.71924992, 3.6879999232, 4.2504998656, 4.2192498688, 4.2192498688, 4.2192498688, 4.2192498688, 4.2192498688, 4.2192498688, 4.6879998208, 4.7192498176, 4.7192498176, 4.6879998208, 4.7192498176, 4.7192498176, 4.7192498176, 4.656749824, 4.6879998208, 4.5942498304, 4.7192498176, 4.6879998208, 4.6879998208, 5.2192497664, 5.2192497664, 5.1879997696, 5.0004997888, 5.3129997568, 5.1879997696, 5.250499763200001, 5.0629997824, 5.3129997568, 5.28174976, 5.28174976, 5.250499763200001, 5.3129997568, 5.3129997568, 5.250499763200001, 5.1567497728, 5.3129997568, 5.594249727999999, 5.9379996928, 6.281749657600001, 6.0004996863999995, 5.906749696, 5.906749696, 6.0942496768000005, 5.9692496896, 5.7817497088, 5.906749696, 5.7817497088, 5.875499699200001, 5.656749721600001, 5.125499776, 6.0942496768000005, 5.8129997056, 5.875499699200001, 5.9379996928, 5.875499699200001, 5.906749696, 5.8442497024, 5.9379996928, 5.8129997056, 5.906749696, 5.8442497024, 5.8442497024, 5.906749696, 6.0942496768000005, 5.9379996928, 5.9379996928, 5.9379996928, 5.9379996928, 6.3129996544, 6.281749657600001, 5.9692496896, 2.7505000192, 2.7505000192, 2.7505000192] + + + + + + + + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(CS2_35, linewidth=1,c='b',label="Device2") + ax.plot(CS2_36, linewidth=1,c='g',label="Device3") + ax.plot(CS2_37, linewidth=1,c='y',label="Device4") + ax.plot(CS2_38, linewidth=1,c='r',label="Device5") + + # 显示图形 + font1 = { + 'weight' : 'normal', + 'size' : 14, + } + + + #设置横纵坐标的名称以及对应字体格式 + font2 = {#'family' : 'Times New Roman', + 'weight' : 'normal', + 'size' : 30, + } + + plt.xlabel('Cycle',font1) #X轴标签 + plt.ylabel("Capacity (Ah)",font1) #Y轴标签 + plt.legend() + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_IGBT_curves_comparision.eps',dpi=800,format='eps',bbox_inches = 'tight') + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_IGBT_curves_comparision.png',dpi=800,format='png',bbox_inches = 'tight') + plt.show() + + return CS2_35[:-5],CS2_36[:-5],CS2_37[:-5],CS2_38[:-5] + + + +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() +shed=4.5 + +# print(CS2_35) + +CS2_35=list(np.array(CS2_35)-CS2_35[0]) +CS2_36=list(np.array(CS2_36)-CS2_36[0]) +CS2_37=list(np.array(CS2_37)-CS2_37[0]) +CS2_38=list(np.array(CS2_38)-CS2_38[0]) + +# print(CS2_35) + + +# print(CS2_35[0]) +# print(CS2_36[0]) +# print(CS2_37[0]) +# print(CS2_38[0]) + +def get_health_list(CS2_35,shed): + for i in range(len(CS2_35)): + if CS2_35[i]>shed: ######################################## 小于门槛值 + CS235=CS2_35[0:i] + return list(CS235) + +# CS235=get_health_list(CS2_35,shed) +# CS236=get_health_list(CS2_36,shed) +# CS237=get_health_list(CS2_37,shed) +# CS238=get_health_list(CS2_38,shed) + +# fig, ax = plt.subplots() +# # 在生成的坐标系下画折线图 +# ax.plot(CS235, linewidth=1) +# ax.plot(CS236, linewidth=1) +# ax.plot(CS237, linewidth=1) +# ax.plot(CS238, linewidth=1) + +# # 显示图形 +# plt.show() + +def get_input_out_2(CS236,CS237,time_windows): + + print(CS237) + # CS235_health=get_health_list(CS235,shed) + CS237_health=get_health_list(CS237,shed) + CS236_health=get_health_list(CS236,shed) + # CS235_health[::-1] + # print(CS236_health) + + # print(CS235_health) + + # CS235_health=list(reversed(CS235_health)) + # print(CS23_health) + + + + CS236_health=list(reversed(CS236_health)) + CS237_health=list(reversed(CS237_health)) + + # for i in range(time_windows-1-2): + # CS235_health.append(0) + + for i in range(time_windows-1-2): + CS236_health.append(0) + + for i in range(time_windows-1-2): + CS237_health.append(0) + + # CS235_health=list(reversed(CS235_health)) + CS236_health=list(reversed(CS236_health)) + CS237_health=list(reversed(CS237_health)) + + x_train_list=[] + y_train_list=[] + # for i in range(len(CS235_health)-time_windows+1): + # x_train_list.append(np.array(CS235_health[i:i+time_windows])) + # y_train_list.append(len(CS235_health)-time_windows+1-1-i) + + for i in range(len(CS236_health)-time_windows+1): + x_train_list.append(np.array(CS236_health[i:i+time_windows])) + y_train_list.append(len(CS236_health)-time_windows+1-1-i) + x_train_array=np.array(x_train_list) + y_train_array=np.array(y_train_list) + + + x_test_list=[] + y_test_list=[] + for i in range(len(CS237_health)-time_windows+1): + x_test_list.append(np.array(CS237_health[i:i+time_windows])) + y_test_list.append(len(CS237_health)-time_windows+1-1-i) + + x_test_array=np.array(x_test_list) + y_test_array=np.array(y_test_list) + + return x_train_array , y_train_array , x_test_array , y_test_array + + + + + + + + + +def get_input_out_3(CS235,CS236,CS237,time_windows): + # min_len=min(len(CS235),len(CS236),len(CS237)) + + # input_list=[] + # output_list=[] + + # true_out_list=[] + + CS235_health=get_health_list(CS235,shed) + CS236_health=get_health_list(CS236,shed) + CS237_health=get_health_list(CS237,shed) + + print(len(CS237_health)) + print("hhhhhhhhhhhh") + # CS235_health[::-1] + + # print(CS235_health) + + CS235_health=list(reversed(CS235_health)) + # print(CS23_health) + + + + CS236_health=list(reversed(CS236_health)) + CS237_health=list(reversed(CS237_health)) + + for i in range(time_windows-1-2): + CS235_health.append(0) + + for i in range(time_windows-1-2): + CS236_health.append(0) + + for i in range(time_windows-1-2): + CS237_health.append(0) + + CS235_health=list(reversed(CS235_health)) + CS236_health=list(reversed(CS236_health)) + CS237_health=list(reversed(CS237_health)) + + x_train_list=[] + y_train_list=[] + for i in range(len(CS235_health)-time_windows+1): + x_train_list.append(np.array(CS235_health[i:i+time_windows])) + y_train_list.append(len(CS235_health)-time_windows+1-1-i) + + for i in range(len(CS236_health)-time_windows+1): + x_train_list.append(np.array(CS236_health[i:i+time_windows])) + y_train_list.append(len(CS236_health)-time_windows+1-1-i) + x_train_array=np.array(x_train_list) + y_train_array=np.array(y_train_list) + + + x_test_list=[] + y_test_list=[] + for i in range(len(CS237_health)-time_windows+1): + x_test_list.append(np.array(CS237_health[i:i+time_windows])) + y_test_list.append(len(CS237_health)-time_windows+1-1-i) + + x_test_array=np.array(x_test_list) + y_test_array=np.array(y_test_list) + + print(y_test_array.shape) + print("jjjjjjjjjj") + + return x_train_array , y_train_array , x_test_array , y_test_array + + + + +# x_train_array , y_train_array , x_test_array , y_test_array=get_input_out_3(CS2_35,CS2_36,CS2_37,20) + +# x_train_array , y_train_array , x_test_array , y_test_array=get_input_out_2(CS2_36,CS2_37,20) + + + + + + + + +#import tensorflow as tf +import os +import logging +import numpy as np +#from numpy import trans +import matplotlib.pyplot as plt +#import tensorflow as tf +# import CMAPSSDataset +import pandas as pd +import datetime +import keras +from keras.layers import Lambda +import math +import keras.backend as K +import tensorflow.compat.v1 as tf +# tf.disable_v2_behavior() +from tfdeterminism import patch +from sklearn.model_selection import train_test_split +from keras.utils.vis_utils import plot_model +# from tf import keras +patch() +# tf.random.set_seed(0) +#import keras +#flags = tf.flags +#flags.DEFINE_string("weights", None, 'weights of the network')################# the file path of weights +#flags.DEFINE_integer("epochs", 100, 'train epochs') +#flags.DEFINE_integer("batch_size", 32, 'batch size for train/test') +#flags.DEFINE_integer("sequence_length", 32, 'sequence length') +#flags.DEFINE_boolean('debug', False, 'debugging mode or not') +#FLAGS = flags.FLAGS + +def root_mean_squared_error(y_true, y_pred): + return K.sqrt(K.mean(K.square(y_pred - y_true),axis=0))################## axis=0 + +def rmse(predictions, targets): + return np.sqrt(((predictions - targets) ** 2).mean()) + + + + + +segment=3 + + + +run_times=10 + + + +nb_epochs=2000 #200 +batch_size=64 ## 64 #####300 +# sequence_length=31 ############# min31 max303 + +patience=50 +patience_reduce_lr=20 + + + + + +seed=2 + + + +num_filter1=64 +num_filter2=128 +num_filter3=64 + + + +kernel1_size=8 +kernel2_size=5 +kernel3_size=3 + + + + + + + + + + + + + + + +# X_train , Y_train , X_test , Y_test =get_input_out_3(CS2_35,CS2_36,CS2_38,sequence_length) + + +sequence_length=20 + + + +X_train , Y_train , X_test , Y_test =get_input_out_2(CS2_36,CS2_37,sequence_length) + + +for FD in [1]: ######['1','2','3','4'] + # if max_life==110 and FD=='1': + # continue + # if max_life==110 and FD=='2': + # continue + + FD_feature_columns=[] + + + + + + + + + + + + + method_name='grid_FD{}_TaFCN_IGBT_npseed{}_segment_{}'.format(FD,seed,segment) + # method_name='FCN_RUL_1out_train_split_test' + dataset='cmapssd' + + + def unbalanced_penalty_score_1out(Y_test,Y_pred) : + + s=0 + for i in range(len(Y_pred)): + if Y_pred[i]>Y_test[i]: + s=s+math.exp((Y_pred[i]-Y_test[i])/10)-1 + else: + s=s+math.exp((Y_test[i]-Y_pred[i])/13)-1 + print('unbalanced_penalty_score{}'.format(s)) + return s + + def error_range_1out(Y_test,Y_pred) : + error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + print('error range{}'.format(error_range)) + return error_range + + + print(X_train.shape) + X_train=X_train.reshape(X_train.shape[0],X_train.shape[1],1,1) + + + X_test=X_test.reshape(X_test.shape[0],X_train.shape[1],1,1) + + # x_train_array , y_train_array , x_test_array , y_test_array=get_input_out_2(CS2_36,CS2_37,20) + + + + import six + + import keras.backend as K + from keras.utils.generic_utils import deserialize_keras_object + from keras.utils.generic_utils import serialize_keras_object + from tensorflow.python.ops import math_ops + from tensorflow.python.util.tf_export import tf_export + + + + + + from tensorflow.python.ops import math_ops + + + + + + + + + + + + + # reshape_size=len(FD_feature_columns)*int((sequence_length/3)) + def FCN_model(): + # in0 = keras.Input(shape=(sequence_length,train_feature_slice.shape[1])) # shape: (batch_size, 3, 2048) + # in0_shaped= keras.layers.Reshape((train_feature_slice.shape[1],sequence_length,1))(in0) + + in0 = keras.Input(shape=(X_train.shape[1],X_train.shape[2],X_train.shape[3]),name='layer_13') # shape: (batch_size, 3, 2048) + # begin_senet=SeBlock()(in0) + x = keras.layers.AveragePooling2D(pool_size=(int(sequence_length/segment), 1), strides=int(sequence_length/segment),name='layer_12')(in0) + # x = keras.layers.Reshape((-1,1))(x) + + # x = keras.layers.Reshape((len(FD_feature_columns)*int((sequence_length/3)),))(x) + x = keras.layers.Reshape((-1,))(x) + # x = keras.layers.GlobalAveragePooling2D()(in0) + x = keras.layers.Dense(1, use_bias=False,activation=keras.activations.relu)(x) + kernel = keras.layers.Dense(1, use_bias=False,activation=keras.activations.hard_sigmoid,name='layer_11')(x) + begin_senet= keras.layers.Multiply(name='layer_10')([in0,kernel]) #给通道加权重 + + + + + # conv0 = keras.layers. + + + conv0 = keras.layers.Conv2D(num_filter1, kernel1_size, strides=1, padding='same',name='layer_9')(begin_senet) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_8')(conv0) + + # conv0 = keras.layers.Dropout(dropout)(conv0) + conv0 = keras.layers.Conv2D(num_filter2, kernel2_size, strides=1, padding='same',name='layer_7')(conv0) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_6')(conv0) + + # conv0 = keras.layers.Dropout(dropout)(conv0) + conv0 = keras.layers.Conv2D(num_filter3, kernel3_size, strides=1, padding='same',name='layer_5')(conv0) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_4')(conv0) + conv0 = keras.layers.GlobalAveragePooling2D(name='layer_3')(conv0) + conv0 = keras.layers.Dense(64, activation='relu',name='layer_2')(conv0) + out = keras.layers.Dense(1, activation='relu',name='layer_1')(conv0) + + + + + + + model = keras.models.Model(inputs=in0, outputs=[out]) + + return model + + + # ##############shuaffle the data + np.random.seed(seed) + index=np.arange(X_train.shape[0]) + np.random.shuffle(index,) + + + X_train=X_train[index]#X_train是训练集,y_train是训练标签 + Y_train=Y_train[index] + + #X_train, Xtest, Y_train, ytest = train_test_split(X_train, Y_train, test_size=0.7, random_state=0) + + + if __name__ == '__main__': + + error_record=[] + index_record=[] + unbalanced_penalty_score_record=[] + error_range_left_record=[] + error_range_right_record=[] + index_min_val_loss_record,min_val_loss_record=[],[] + + if os.path.exists(r"F:\桌面11.17\project\RUL\experiments_result\method_error_txt\{}.txt".format(method_name)):os.remove(r"F:\桌面11.17\project\RUL\experiments_result\method_error_txt\{}.txt".format(method_name)) + + + + + + rul_pred_array_list=[] + true_out_array_list=[] + error_pred_array_list=[] + + ####### single output + + for i in range(run_times): + print('xxx') + + model=FCN_model() + plot_model(model, to_file=r"F:\桌面11.17\project\RUL\Flatten.png", show_shapes=True)#########to_file='Flatten.png',r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5 + + optimizer = keras.optimizers.Adam() + model.compile(loss='mse',#loss=root_mean_squared_error, + optimizer=optimizer, + metrics=[root_mean_squared_error]) + + reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor = 'loss', factor=0.5, + patience=patience_reduce_lr, min_lr=0.0001) + + + # verbose=1, validation_split=VALIDATION_SPLIT, callbacks = [reduce_lr]) + model_name='{}_dataset_{}_log{}_time{}'.format(method_name,dataset,i,datetime.datetime.now().strftime('%Y%m%d%H%M%S')) + earlystopping=keras.callbacks.EarlyStopping(monitor='loss',patience=patience,verbose=1) + modelcheckpoint=keras.callbacks.ModelCheckpoint(monitor='loss',filepath=r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),save_best_only=True,verbose=1) + hist = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epochs, + verbose=1, validation_data=(X_test, Y_test), callbacks = [reduce_lr,earlystopping,modelcheckpoint]) + # hist = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epochs, + # verbose=1, validation_data=(X_test, Y_test), callbacks = [reduce_lr,earlystopping,modelcheckpoint]) + log = pd.DataFrame(hist.history) + log.to_excel(r"F:\桌面11.17\project\RUL\experiments_result\log\{}_dataset_{}_log{}_time{}.xlsx".format(method_name,dataset,i,datetime.datetime.now().strftime('%Y%m%d%H%M%S'))) + + print(hist.history.keys()) + epochs=range(len(hist.history['loss'])) + plt.figure() + plt.plot(epochs,hist.history['loss'],'b',label='Training loss') + plt.plot(epochs,hist.history['val_loss'],'r',label='Validation val_loss') + plt.title('Traing and Validation loss') + plt.legend() + plt.show() + + + + # model=keras.models.load_model(r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),custom_objects={'root_mean_squared_error': root_mean_squared_error,'Smooth':Smooth,'SeBlock':SeBlock}) + model=keras.models.load_model(r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),custom_objects={'root_mean_squared_error': root_mean_squared_error}) + for layer in model.layers: + layer.trainable=False + # score = model.evaluate(X_test, Y_test) ############forbid evaluate!!!!!!!!!!!!!!!!!! + # print('score[1]:{}'.format(score[1])) ############forbid evaluate!!!!!!!!!!!!!!!!!! + + Y_pred=model.predict(X_test) + # rmse=root_mean_squared_error(Y_test,Y_pred) + # with tf.Session() as sess: + # print(rmse.eval()) + rmse_value=rmse(Y_test,Y_pred) + # print('rmse:{}'.format(rmse_value)) + + + rul_pred_array=np.array(Y_pred) + rul_pred_array=rul_pred_array.reshape(rul_pred_array.shape[0]) + + # print(rul_pred_array.shape) + + true_out_array=np.array(Y_test) + + error_pred_array=rul_pred_array-true_out_array + + error_pred_array=np.maximum(error_pred_array, -error_pred_array) + # print(sol.x) + + # print(error_pred_array.sum()) + # print("xxxxx") + # print(error_pred_array) + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(error_pred_array, linewidth=1) + + + + # 显示图形 + plt.show() + + + # print(i) + # print("rul_pred_array") + # print(list(rul_pred_array)) + # print("true_out_array") + # print(list(true_out_array)) + # print("error_pred_array") + # print(list(error_pred_array)) + + rul_pred_array_list.append(rul_pred_array) + true_out_array_list.append(true_out_array) + error_pred_array_list.append(error_pred_array) + rul_pred_array=np.mean(rul_pred_array_list,axis=0) + true_out_array=np.mean(true_out_array_list,axis=0) + error_pred_array=np.mean(error_pred_array_list,axis=0) + + + print(i) + print("rul_pred_array") + print(list(rul_pred_array)) + print("true_out_array") + print(list(true_out_array)) + print("error_pred_array") + print(list(error_pred_array)) + + + diff --git a/code/comparison experiments/cacle/DPA_our_method/DPA.py b/code/comparison experiments/cacle/DPA_our_method/DPA.py new file mode 100644 index 0000000..69efd13 --- /dev/null +++ b/code/comparison experiments/cacle/DPA_our_method/DPA.py @@ -0,0 +1,456 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Mar 20 16:46:05 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 19 22:07:49 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 19 20:41:41 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sat Mar 18 13:04:56 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 16:49:17 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 16:26:02 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 14:28:22 2022 + +@author: Administrator +""" +# -*- coding: utf-8 -*- +""" +Created on Sun Jul 31 18:17:31 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sat Jul 30 14:50:53 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Thu Jul 28 14:55:56 2022 + +@author: Administrator + +""" + + + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + + +shed=-0.5 + +import numpy as np +import pandas as pd +import os +import pickle +import scipy as sp +import datetime +print(os.path.abspath(os.path.join(os.getcwd(), "../.."))) +last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../..")) + +print(os.path.abspath(os.path.join(os.getcwd(), ".."))) +last_path=os.path.abspath(os.path.join(os.getcwd(), "..")) + +print(os.path.abspath(os.path.join(os.getcwd(), "../../.."))) +last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) + + +print(os.path.abspath(os.path.join(os.getcwd(), "../../../.."))) +last_last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../../..")) + + + + + +def get_data_list(): + worksheet = xlrd.open_workbook(last_last_last_last_path+r'\dataset\CACLE\CS2_35_cap_dropOutlier.xlsx') + sheet_names= worksheet.sheet_names() + print(sheet_names) + CS2_35=[] + for sheet_name in sheet_names: + sheet = worksheet.sheet_by_name(sheet_name) + rows = sheet.nrows # 获取行数 + cols = sheet.ncols # 获取列数,尽管没用到 + all_content = [] + + + CS2_35 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + + worksheet = xlrd.open_workbook(last_last_last_last_path+r'\dataset\CACLE\CS2_36_cap_dropOutlier.xlsx') + sheet_names= worksheet.sheet_names() + print(sheet_names) + CS2_36=[] + for sheet_name in sheet_names: + sheet = worksheet.sheet_by_name(sheet_name) + rows = sheet.nrows # 获取行数 + cols = sheet.ncols # 获取列数,尽管没用到 + all_content = [] + + + CS2_36 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + worksheet = xlrd.open_workbook(last_last_last_last_path+r'\dataset\CACLE\CS2_37_cap_dropOutlier.xlsx') + sheet_names= worksheet.sheet_names() + print(sheet_names) + CS2_37=[] + for sheet_name in sheet_names: + sheet = worksheet.sheet_by_name(sheet_name) + rows = sheet.nrows # 获取行数 + cols = sheet.ncols # 获取列数,尽管没用到 + all_content = [] + + + CS2_37 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + + worksheet = xlrd.open_workbook(last_last_last_last_path+r'\dataset\CACLE\CS2_38_cap_dropOutlier.xlsx') + sheet_names= worksheet.sheet_names() + print(sheet_names) + CS2_38=[] + for sheet_name in sheet_names: + sheet = worksheet.sheet_by_name(sheet_name) + rows = sheet.nrows # 获取行数 + cols = sheet.ncols # 获取列数,尽管没用到 + all_content = [] + + + CS2_38 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + + + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(CS2_35, linewidth=1,c='b',label="CS2_35") + ax.plot(CS2_36, linewidth=1,c='g',label="CS2_36") + ax.plot(CS2_37, linewidth=1,c='y',label="CS2_37") + ax.plot(CS2_38, linewidth=1,c='r',label="CS2_38") + + # 显示图形 + font1 = { + 'weight' : 'normal', + 'size' : 14, + } + + + #设置横纵坐标的名称以及对应字体格式 + font2 = {#'family' : 'Times New Roman', + 'weight' : 'normal', + 'size' : 30, + } + + plt.xlabel('Cycle',font1) #X轴标签 + plt.ylabel("Capacity (Ah)",font1) #Y轴标签 + plt.legend() + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_cycle_curves_comparision.eps',dpi=800,format='eps',bbox_inches = 'tight') + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_cycle_curves_comparision.png',dpi=800,format='png',bbox_inches = 'tight') + plt.show() + + return CS2_35,CS2_36,CS2_37,CS2_38 +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() + + +print(CS2_35) + +CS2_35=list(np.array(CS2_35)-CS2_35[0]) +CS2_36=list(np.array(CS2_36)-CS2_36[0]) +CS2_37=list(np.array(CS2_37)-CS2_37[0]) +CS2_38=list(np.array(CS2_38)-CS2_38[0]) + +print(CS2_35) + + +print(CS2_35[0]) +print(CS2_36[0]) +print(CS2_37[0]) +print(CS2_38[0]) + +def get_health_list(CS2_35,shed): + for i in range(len(CS2_35)): + if CS2_35[i]Y_test[i]: + s=s+math.exp((Y_pred[i]-Y_test[i])/10)-1 + else: + s=s+math.exp((Y_test[i]-Y_pred[i])/13)-1 + # print('unbalanced_penalty_score{}'.format(s)) + return s + +def error_range(Y_test,Y_pred) : + Y_test =np.array(Y_test) + Y_pred =np.array(Y_pred) + + error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + # print('error range{}'.format(error_range)) + return error_range + +def error_list(Y_test,Y_pred) : + Y_test =np.array(Y_test) + Y_pred =np.array(Y_pred) + + error_list=Y_test-Y_pred + # Y_test =np.array(Y_test) + # Y_pred =np.array(Y_pred) + + # error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + # print('error range{}'.format(error_range)) + return list(error_list) + +print(list((error_list(groud_truth[-min_len:],Si[-min_len:]),error_list(groud_truth[-min_len:],Zhang[-min_len:]),error_list(groud_truth[-min_len:],Hu[-min_len:]),error_list(groud_truth[-min_len:],DCNN[-min_len:]),error_list(groud_truth[-min_len:],TaFCN[-min_len:]),error_list(groud_truth[-min_len:],Our[-min_len:])))) + +print(list((rmse(Si_error[-min_len:]),rmse(Zhang_error[-min_len:]),rmse(Hu_error[-min_len:]),rmse(DCNN_error[-min_len:]),rmse(TaFCN_error[-min_len:]),rmse(Our_error[-min_len:])))) +print(list((aae(Si_error[-min_len:]),aae(Zhang_error[-min_len:]),aae(Hu_error[-min_len:]),aae(DCNN_error[-min_len:]),aae(TaFCN_error[-min_len:]),aae(Our_error[-min_len:])))) +print(list((score(groud_truth[-min_len:],Si[-min_len:]),score(groud_truth[-min_len:],Zhang[-min_len:]),score(groud_truth[-min_len:],Hu[-min_len:]),score(groud_truth[-min_len:],DCNN[-min_len:]),score(groud_truth[-min_len:],TaFCN[-min_len:]),score(groud_truth[-min_len:],Our[-min_len:])))) +print(list((error_range(groud_truth[-min_len:],Si[-min_len:]),error_range(groud_truth[-min_len:],Zhang[-min_len:]),error_range(groud_truth[-min_len:],Hu[-min_len:]),error_range(groud_truth[-min_len:],DCNN[-min_len:]),error_range(groud_truth[-min_len:],TaFCN[-min_len:]),error_range(groud_truth[-min_len:],Our[-min_len:])))) +def predcition(targets,predictions): + targets=np.array(targets) + predictions=np.array(predictions) + + + # targets=np.array(targets) + # predictions=np.array(predictions) + + + + smape = np.sum( np.abs(predictions - targets)) /np.sum( np.abs( targets)) * 100 + print(np.sum( np.abs(predictions - targets))) + + print(np.sum( np.abs( targets))) + + print(smape) + y=100-smape + + # print(y) + return y + +print(list((predcition(groud_truth[-min_len:],Si[-min_len:]),predcition(groud_truth[-min_len:],Zhang[-min_len:]),predcition(groud_truth[-min_len:],Hu[-min_len:]),predcition(groud_truth[-min_len:],DCNN[-min_len:]),predcition(groud_truth[-min_len:],TaFCN[-min_len:]),predcition(groud_truth[-min_len:],Our[-min_len:])))) + +# print(groud_truth[-min_len:],Si[-min_len:]),aae(Zhang_error[-min_len:]),aae(TaFCN_error[-min_len:]),aae(Our_error[-min_len:])) + + + +# print(rmse(Si_error),rmse(Zhang_error),rmse(TaFCN_error),rmse(Our_error)) + +# 显示图形 +font1 = { +'weight' : 'normal', +'size' : 14, +} + + + #设置横纵坐标的名称以及对应字体格式 +font2 = {#'family' : 'Times New Roman', +'weight' : 'normal', +'size' : 30, +} + +plt.xlabel('Actual RUL (cycle)',font1) #X轴标签 +plt.ylabel("Absolute prediction error (cycle)",font1) #Y轴标签 +plt.gca().invert_xaxis() +plt.legend() +plt.savefig(last_last_last_path+r'\figure\by_code\The_absolute_error_of_predicted_RUL_cacle_3536_38.eps',dpi=800,format='eps',bbox_inches = 'tight') +plt.savefig(last_last_last_path+r'\figure\by_code\The_absolute_error_of_predicted_RUL_cacle_3536_38.png',dpi=800,format='png',bbox_inches = 'tight') +plt.show() + + + + + +xlabel='Actual RUL' +ylabel='Prediction error' + diff --git a/code/comparison experiments/cacle/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt b/code/comparison experiments/cacle/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt new file mode 100644 index 0000000..c84ed61 --- /dev/null +++ b/code/comparison experiments/cacle/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt @@ -0,0 +1,806 @@ +2023-03-22 19:18:03,735 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,736 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,825 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,826 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,460 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,461 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,553 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,553 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:20:00,213 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. + +2023-03-22 19:20:00,235 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:3980: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead. + +2023-03-22 19:20:00,241 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. + +2023-03-22 19:20:00,258 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead. + +2023-03-22 19:20:00,312 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead. + +2023-03-22 19:20:00,313 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead. + +2023-03-22 19:20:00,314 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:186: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead. + +2023-03-22 19:20:02,670 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. + +2023-03-22 19:20:02,671 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead. + +2023-03-22 19:20:02,901 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead. + +2023-03-22 19:20:02,940 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead. + +2023-03-22 19:20:02,990 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:133: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. + +2023-03-22 19:20:03,741 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead. + +2023-03-22 19:20:03,983 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\ops\math_grad.py:1424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. +Instructions for updating: +Use tf.where in 2.0, which has the same broadcast rule as np.where +2023-03-22 19:20:04,011 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead. + +2023-03-22 19:20:04,216 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead. + +2023-03-22 19:22:47,451 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,452 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,545 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,546 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:52,870 - matplotlib.font_manager - DEBUG -findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0. +2023-03-22 19:22:52,871 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,871 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,872 - matplotlib.font_manager - DEBUG -findfont: score() = 1.05 +2023-03-22 19:22:52,873 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,874 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,874 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,875 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,875 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,877 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,877 - matplotlib.font_manager - DEBUG -findfont: score() = 0.33499999999999996 +2023-03-22 19:22:52,878 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,878 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,879 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,880 - matplotlib.font_manager - DEBUG -findfont: score() = 0.05 +2023-03-22 19:22:52,880 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,882 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,882 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,883 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,883 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,885 - matplotlib.font_manager - DEBUG -findfont: score() = 1.335 +2023-03-22 19:22:52,885 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,886 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,886 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,887 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,887 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,888 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,890 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,890 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,891 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,891 - matplotlib.font_manager - DEBUG -findfont: score() = 10.43 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,893 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,893 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,894 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,894 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,895 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,895 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,896 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,896 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,897 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,897 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,899 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,899 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,900 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,900 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 11.525 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,902 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,902 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,903 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,903 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,904 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,904 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:52,905 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,905 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,906 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,906 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,908 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,908 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,909 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,909 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,911 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,911 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,912 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,912 - matplotlib.font_manager - DEBUG -findfont: score() = 10.44 +2023-03-22 19:22:52,913 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,913 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 11.25 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,915 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,915 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,916 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,916 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,917 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,917 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,918 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,918 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,920 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,920 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,921 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,921 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,923 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:52,923 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,925 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,925 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:52,926 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,926 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,928 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,928 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,929 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,931 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,931 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,932 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,932 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,933 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,933 - matplotlib.font_manager - DEBUG -findfont: score() = 3.9713636363636367 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,935 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,935 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,936 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,936 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 3.6863636363636365 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,938 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 4.971363636363637 +2023-03-22 19:22:52,940 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,940 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,941 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,941 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,943 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,943 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,944 - matplotlib.font_manager - DEBUG -findfont: score() = 6.888636363636364 +2023-03-22 19:22:52,944 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,946 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,946 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,947 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,947 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,948 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,948 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,949 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,950 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,950 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,952 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,952 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,954 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,954 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,955 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,955 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,957 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,957 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,959 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,959 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,960 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,960 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,961 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,961 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,962 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,962 - matplotlib.font_manager - DEBUG -findfont: score() = 7.8986363636363635 +2023-03-22 19:22:52,963 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,963 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,965 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,965 - matplotlib.font_manager - DEBUG -findfont: score() = 6.698636363636363 +2023-03-22 19:22:52,966 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,966 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,968 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,968 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,969 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,969 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,970 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,970 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,972 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,972 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,973 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,973 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,975 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,975 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,976 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,976 - matplotlib.font_manager - DEBUG -findfont: score() = 11.43 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,978 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,979 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,979 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,980 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,980 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,981 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,981 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,983 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,983 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,984 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,984 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,986 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,986 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,987 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,987 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,989 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,989 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,991 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,991 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,992 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,992 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,994 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,995 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,995 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,996 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,996 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,997 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,997 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,998 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,998 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,000 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,000 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,001 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,001 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,003 - matplotlib.font_manager - DEBUG -findfont: score() = 10.344999999999999 +2023-03-22 19:22:53,003 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,004 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,004 - matplotlib.font_manager - DEBUG -findfont: score() = 11.525 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,006 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,006 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 4.6863636363636365 +2023-03-22 19:22:53,008 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,008 - matplotlib.font_manager - DEBUG -findfont: score() = 7.698636363636363 +2023-03-22 19:22:53,009 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,009 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,010 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,010 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,011 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:53,011 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,012 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,012 - matplotlib.font_manager - DEBUG -findfont: score() = 6.413636363636363 +2023-03-22 19:22:53,013 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,013 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,014 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,014 - matplotlib.font_manager - DEBUG -findfont: score() = 7.413636363636363 +2023-03-22 19:22:53,015 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,015 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,016 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,016 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,018 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,018 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,020 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,020 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,021 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,021 - matplotlib.font_manager - DEBUG -findfont: score() = 7.613636363636363 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,023 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,023 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:53,024 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,024 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,025 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,025 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,026 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,026 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,027 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,027 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,028 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,028 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,029 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,029 - matplotlib.font_manager - DEBUG -findfont: score() = 6.8986363636363635 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,031 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,031 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,032 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,032 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 6.613636363636363 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,034 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,034 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:53,036 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,036 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,037 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,037 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,039 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,039 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,040 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,042 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,057 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,058 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,058 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:53,060 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,060 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,063 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 11.535 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,065 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,065 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,067 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,067 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,069 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,069 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,070 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,070 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,071 - matplotlib.font_manager - DEBUG -findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0 to DejaVu Sans ('C:\\Users\\Administrator\\anaconda3\\envs\\python36\\lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +2023-03-22 19:23:05,774 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,776 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,778 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,779 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,781 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,782 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,783 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,784 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,785 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,786 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,787 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,788 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,789 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,791 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,792 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,793 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,794 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,795 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,796 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,798 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,799 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:24:47,221 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,222 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,315 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,316 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,075 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,075 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,162 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,163 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,081 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,082 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,176 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,177 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,240 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,240 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,332 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,333 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,010 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,010 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,097 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,097 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,407 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,408 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,505 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,506 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,126 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,126 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,215 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,216 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,143 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,144 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,243 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,244 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,337 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,338 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,432 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,433 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,170 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,170 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,264 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,265 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,578 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,579 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,674 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,675 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,053 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,054 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,144 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,145 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:20,912 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:20,913 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:21,006 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:21,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,422 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,423 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,515 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,517 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,455 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,456 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,550 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,551 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,408 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,409 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,496 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,497 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,883 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,884 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,970 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,971 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:51,988 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:51,989 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:52,080 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:52,081 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:13,943 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:13,944 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:14,041 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:14,042 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,890 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,891 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,983 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,985 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:44,983 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:44,984 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:45,071 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:45,072 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:58,916 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:58,917 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:59,006 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:59,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,073 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,074 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,166 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,168 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:19,894 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:19,897 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:20,005 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:20,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. diff --git a/code/comparison experiments/cacle/tafcn2022/TaFCN.py b/code/comparison experiments/cacle/tafcn2022/TaFCN.py new file mode 100644 index 0000000..3a501c0 --- /dev/null +++ b/code/comparison experiments/cacle/tafcn2022/TaFCN.py @@ -0,0 +1,722 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Mar 22 16:37:59 2023 + +@author: Administrator +""" + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + + +shed=-0.5 + +import numpy as np +import pandas as pd +import os +import pickle +import scipy as sp +import datetime +print(os.path.abspath(os.path.join(os.getcwd(), "../.."))) +last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../..")) + +print(os.path.abspath(os.path.join(os.getcwd(), ".."))) +last_path=os.path.abspath(os.path.join(os.getcwd(), "..")) + +print(os.path.abspath(os.path.join(os.getcwd(), "../../.."))) +last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) + + +print(os.path.abspath(os.path.join(os.getcwd(), "../../../.."))) +last_last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../../..")) + + +# print(os.path.abspath(os.path.join(os.getcwd(), "../../../"))) +# last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) +# def get_data_list(CS2_35_cap_dropOutlier): +# worksheet = xlrd.open_workbook('F:\桌面11.17\project\RUL_guassion\handled_dataset\CACLE\{}.xlsx'.format(CS2_35_cap_dropOutlier)) +# sheet_names= worksheet.sheet_names() +# print(sheet_names) +# CS2_35=[] +# for sheet_name in sheet_names: +# sheet = worksheet.sheet_by_name(sheet_name) +# rows = sheet.nrows # 获取行数 +# cols = sheet.ncols # 获取列数,尽管没用到 +# all_content = [] + + +# CS2_35 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + + +# fig, ax = plt.subplots() +# # 在生成的坐标系下画折线图 +# ax.plot(CS2_35, linewidth=1) +# # 显示图形 +# plt.show() + +# return CS2_35 + +# CS2_35=get_data_list("CS2_35_cap_dropOutlier") +# CS2_36=get_data_list("CS2_36_cap_dropOutlier") +# CS2_37=get_data_list("CS2_37_cap_dropOutlier") +# CS2_38=get_data_list("CS2_38_cap_dropOutlier") + + +def get_data_list(): + worksheet = xlrd.open_workbook(last_last_last_last_path+r'\dataset\CACLE\CS2_35_cap_dropOutlier.xlsx') + sheet_names= worksheet.sheet_names() + print(sheet_names) + CS2_35=[] + for sheet_name in sheet_names: + sheet = worksheet.sheet_by_name(sheet_name) + rows = sheet.nrows # 获取行数 + cols = sheet.ncols # 获取列数,尽管没用到 + all_content = [] + + + CS2_35 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + + worksheet = xlrd.open_workbook(last_last_last_last_path+r'\dataset\CACLE\CS2_36_cap_dropOutlier.xlsx') + sheet_names= worksheet.sheet_names() + print(sheet_names) + CS2_36=[] + for sheet_name in sheet_names: + sheet = worksheet.sheet_by_name(sheet_name) + rows = sheet.nrows # 获取行数 + cols = sheet.ncols # 获取列数,尽管没用到 + all_content = [] + + + CS2_36 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + worksheet = xlrd.open_workbook(last_last_last_last_path+r'\dataset\CACLE\CS2_37_cap_dropOutlier.xlsx') + sheet_names= worksheet.sheet_names() + print(sheet_names) + CS2_37=[] + for sheet_name in sheet_names: + sheet = worksheet.sheet_by_name(sheet_name) + rows = sheet.nrows # 获取行数 + cols = sheet.ncols # 获取列数,尽管没用到 + all_content = [] + + + CS2_37 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + + worksheet = xlrd.open_workbook(last_last_last_last_path+r'\dataset\CACLE\CS2_38_cap_dropOutlier.xlsx') + sheet_names= worksheet.sheet_names() + print(sheet_names) + CS2_38=[] + for sheet_name in sheet_names: + sheet = worksheet.sheet_by_name(sheet_name) + rows = sheet.nrows # 获取行数 + cols = sheet.ncols # 获取列数,尽管没用到 + all_content = [] + + + CS2_38 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + + + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(CS2_35, linewidth=1,c='b',label="CS2_35") + ax.plot(CS2_36, linewidth=1,c='g',label="CS2_36") + ax.plot(CS2_37, linewidth=1,c='y',label="CS2_37") + ax.plot(CS2_38, linewidth=1,c='r',label="CS2_38") + + # 显示图形 + font1 = { + 'weight' : 'normal', + 'size' : 14, + } + + + #设置横纵坐标的名称以及对应字体格式 + font2 = {#'family' : 'Times New Roman', + 'weight' : 'normal', + 'size' : 30, + } + + plt.xlabel('Cycle',font1) #X轴标签 + plt.ylabel("Capacity (Ah)",font1) #Y轴标签 + plt.legend() + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_cycle_curves_comparision.eps',dpi=800,format='eps',bbox_inches = 'tight') + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_cycle_curves_comparision.png',dpi=800,format='png',bbox_inches = 'tight') + plt.show() + + return CS2_35,CS2_36,CS2_37,CS2_38 +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() + + +# print(CS2_35) + +CS2_35=list(np.array(CS2_35)-CS2_35[0]) +CS2_36=list(np.array(CS2_36)-CS2_36[0]) +CS2_37=list(np.array(CS2_37)-CS2_37[0]) +CS2_38=list(np.array(CS2_38)-CS2_38[0]) + +# print(CS2_35) + + +# print(CS2_35[0]) +# print(CS2_36[0]) +# print(CS2_37[0]) +# print(CS2_38[0]) + +def get_health_list(CS2_35,shed): + for i in range(len(CS2_35)): + if CS2_35[i]Y_test[i]: + s=s+math.exp((Y_pred[i]-Y_test[i])/10)-1 + else: + s=s+math.exp((Y_test[i]-Y_pred[i])/13)-1 + print('unbalanced_penalty_score{}'.format(s)) + return s + + def error_range_1out(Y_test,Y_pred) : + error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + print('error range{}'.format(error_range)) + return error_range + + + + X_train=X_train.reshape(X_train.shape[0],X_train.shape[1],1,1) + + X_test=X_test.reshape(X_test.shape[0],X_train.shape[1],1,1) + + # x_train_array , y_train_array , x_test_array , y_test_array=get_input_out_2(CS2_36,CS2_37,20) + + + + import six + + import keras.backend as K + from keras.utils.generic_utils import deserialize_keras_object + from keras.utils.generic_utils import serialize_keras_object + from tensorflow.python.ops import math_ops + from tensorflow.python.util.tf_export import tf_export + + + + + + from tensorflow.python.ops import math_ops + + + + + + + #########np.greater_equal([4, 2, 1], [2, 2, 2])array([ True, True, False]) + #############tf.cast( ) 或者K.cast( ) 是执行 tensorflow 中的张量数据类型转换,比如读入的图片是int8类型的,一定要在训练的时候把图片的数据格式转换为float32. + + ################reduce_sum reduce dimensinality and get sum + + + + + #return inputs*x + + + + + + + # reshape_size=len(FD_feature_columns)*int((sequence_length/3)) + def FCN_model(): + # in0 = keras.Input(shape=(sequence_length,train_feature_slice.shape[1])) # shape: (batch_size, 3, 2048) + # in0_shaped= keras.layers.Reshape((train_feature_slice.shape[1],sequence_length,1))(in0) + + in0 = keras.Input(shape=(X_train.shape[1],X_train.shape[2],X_train.shape[3]),name='layer_13') # shape: (batch_size, 3, 2048) + # begin_senet=SeBlock()(in0) + x = keras.layers.AveragePooling2D(pool_size=(int(sequence_length/segment), 1), strides=int(sequence_length/segment),name='layer_12')(in0) + # x = keras.layers.Reshape((-1,1))(x) + + # x = keras.layers.Reshape((len(FD_feature_columns)*int((sequence_length/3)),))(x) + x = keras.layers.Reshape((-1,))(x) + # x = keras.layers.GlobalAveragePooling2D()(in0) + x = keras.layers.Dense(1, use_bias=False,activation=keras.activations.relu)(x) + kernel = keras.layers.Dense(1, use_bias=False,activation=keras.activations.hard_sigmoid,name='layer_11')(x) + begin_senet= keras.layers.Multiply(name='layer_10')([in0,kernel]) #给通道加权重 + + + + + # conv0 = keras.layers. + + + conv0 = keras.layers.Conv2D(num_filter1, kernel1_size, strides=1, padding='same',name='layer_9')(begin_senet) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_8')(conv0) + + # conv0 = keras.layers.Dropout(dropout)(conv0) + conv0 = keras.layers.Conv2D(num_filter2, kernel2_size, strides=1, padding='same',name='layer_7')(conv0) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_6')(conv0) + + # conv0 = keras.layers.Dropout(dropout)(conv0) + conv0 = keras.layers.Conv2D(num_filter3, kernel3_size, strides=1, padding='same',name='layer_5')(conv0) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_4')(conv0) + conv0 = keras.layers.GlobalAveragePooling2D(name='layer_3')(conv0) + conv0 = keras.layers.Dense(64, activation='relu',name='layer_2')(conv0) + out = keras.layers.Dense(1, activation='relu',name='layer_1')(conv0) + + + + + + + model = keras.models.Model(inputs=in0, outputs=[out]) + + return model + + + # ##############shuaffle the data + np.random.seed(seed) + index=np.arange(X_train.shape[0]) + np.random.shuffle(index,) + + + X_train=X_train[index]#X_train是训练集,y_train是训练标签 + Y_train=Y_train[index] + + #X_train, Xtest, Y_train, ytest = train_test_split(X_train, Y_train, test_size=0.7, random_state=0) + + + if __name__ == '__main__': + + error_record=[] + index_record=[] + unbalanced_penalty_score_record=[] + error_range_left_record=[] + error_range_right_record=[] + index_min_val_loss_record,min_val_loss_record=[],[] + + if os.path.exists(r"F:\桌面11.17\project\RUL\experiments_result\method_error_txt\{}.txt".format(method_name)):os.remove(r"F:\桌面11.17\project\RUL\experiments_result\method_error_txt\{}.txt".format(method_name)) + + + + + + rul_pred_array_list=[] + true_out_array_list=[] + error_pred_array_list=[] + + ####### single output + + for i in range(run_times): + print('xxx') + + model=FCN_model() + plot_model(model, to_file=r"F:\桌面11.17\project\RUL\Flatten.png", show_shapes=True)#########to_file='Flatten.png',r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5 + + optimizer = keras.optimizers.Adam() + model.compile(loss='mse',#loss=root_mean_squared_error, + optimizer=optimizer, + metrics=[root_mean_squared_error]) + + reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor = 'loss', factor=0.5, + patience=patience_reduce_lr, min_lr=0.0001) + + + # verbose=1, validation_split=VALIDATION_SPLIT, callbacks = [reduce_lr]) + model_name='{}_dataset_{}_log{}_time{}'.format(method_name,dataset,i,datetime.datetime.now().strftime('%Y%m%d%H%M%S')) + earlystopping=keras.callbacks.EarlyStopping(monitor='loss',patience=patience,verbose=1) + modelcheckpoint=keras.callbacks.ModelCheckpoint(monitor='loss',filepath=r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),save_best_only=True,verbose=1) + hist = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epochs, + verbose=1, validation_data=(X_test, Y_test), callbacks = [reduce_lr,earlystopping,modelcheckpoint]) + # hist = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epochs, + # verbose=1, validation_data=(X_test, Y_test), callbacks = [reduce_lr,earlystopping,modelcheckpoint]) + log = pd.DataFrame(hist.history) + log.to_excel(r"F:\桌面11.17\project\RUL\experiments_result\log\{}_dataset_{}_log{}_time{}.xlsx".format(method_name,dataset,i,datetime.datetime.now().strftime('%Y%m%d%H%M%S'))) + + print(hist.history.keys()) + epochs=range(len(hist.history['loss'])) + plt.figure() + plt.plot(epochs,hist.history['loss'],'b',label='Training loss') + plt.plot(epochs,hist.history['val_loss'],'r',label='Validation val_loss') + plt.title('Traing and Validation loss') + plt.legend() + plt.show() + + + + # model=keras.models.load_model(r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),custom_objects={'root_mean_squared_error': root_mean_squared_error,'Smooth':Smooth,'SeBlock':SeBlock}) + model=keras.models.load_model(r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),custom_objects={'root_mean_squared_error': root_mean_squared_error}) + for layer in model.layers: + layer.trainable=False + # score = model.evaluate(X_test, Y_test) ############forbid evaluate!!!!!!!!!!!!!!!!!! + # print('score[1]:{}'.format(score[1])) ############forbid evaluate!!!!!!!!!!!!!!!!!! + + Y_pred=model.predict(X_test) + # rmse=root_mean_squared_error(Y_test,Y_pred) + # with tf.Session() as sess: + # print(rmse.eval()) + rmse_value=rmse(Y_test,Y_pred) + # print('rmse:{}'.format(rmse_value)) + + + rul_pred_array=np.array(Y_pred) + rul_pred_array=rul_pred_array.reshape(rul_pred_array.shape[0]) + + # print(rul_pred_array.shape) + + true_out_array=np.array(Y_test) + + error_pred_array=rul_pred_array-true_out_array + + error_pred_array=np.maximum(error_pred_array, -error_pred_array) + # print(sol.x) + + # print(error_pred_array.sum()) + # print("xxxxx") + # print(error_pred_array) + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(error_pred_array, linewidth=1) + + + + # 显示图形 + plt.show() + + + # print(i) + # print("rul_pred_array") + # print(list(rul_pred_array)) + # print("true_out_array") + # print(list(true_out_array)) + # print("error_pred_array") + # print(list(error_pred_array)) + + rul_pred_array_list.append(rul_pred_array) + true_out_array_list.append(true_out_array) + error_pred_array_list.append(error_pred_array) + rul_pred_array=np.mean(rul_pred_array_list,axis=0) + true_out_array=np.mean(true_out_array_list,axis=0) + error_pred_array=np.mean(error_pred_array_list,axis=0) + + + print(i) + print("rul_pred_array") + print(list(rul_pred_array)) + print("true_out_array") + print(list(true_out_array)) + print("error_pred_array") + print(list(error_pred_array)) + + + + + \ No newline at end of file diff --git a/code/comparison experiments/nasa/DPA_our_method/DPA.py b/code/comparison experiments/nasa/DPA_our_method/DPA.py new file mode 100644 index 0000000..69223a2 --- /dev/null +++ b/code/comparison experiments/nasa/DPA_our_method/DPA.py @@ -0,0 +1,503 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Mar 20 16:46:05 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 19 22:07:49 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 19 20:41:41 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sat Mar 18 13:04:56 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 16:49:17 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 16:26:02 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 14:28:22 2022 + +@author: Administrator +""" +# -*- coding: utf-8 -*- +""" +Created on Sun Jul 31 18:17:31 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sat Jul 30 14:50:53 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Thu Jul 28 14:55:56 2022 + +@author: Administrator + +""" + + + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + + +shed=-0.45 + +import numpy as np +import pandas as pd +import os +import pickle +import scipy as sp +import datetime + + +import numpy as np + +import scipy as sp + +import math + +from numpy import matmul as mm +from math import sqrt,pi,log, exp + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + +from scipy.stats import norm + + +import scipy.io as scio + + + + +print(os.path.abspath(os.path.join(os.getcwd(), "../.."))) +last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../..")) + +print(os.path.abspath(os.path.join(os.getcwd(), ".."))) +last_path=os.path.abspath(os.path.join(os.getcwd(), "..")) + +print(os.path.abspath(os.path.join(os.getcwd(), "../../.."))) +last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) + + +print(os.path.abspath(os.path.join(os.getcwd(), "../../../.."))) +last_last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../../..")) + + + + + +def get_data_list(): + + + + + + path = last_last_last_last_path+r'\dataset\nasa\B0005_2.mat' + + matdata = scio.loadmat(path) + + CS2_35=matdata["B0005_2"][0] + # plt.plot(range(len(x)),x) + # plt.show() + + # print(x) + + + path = last_last_last_last_path+r'\dataset\nasa\B0006_2.mat' + + matdata = scio.loadmat(path) + + CS2_36=matdata["B0006_2"][0] + # plt.plot(range(len(x)),x) + # plt.show() + + # print(x) + + + path = last_last_last_last_path+r'\dataset\nasa\B0007_2.mat' + + matdata = scio.loadmat(path) + + CS2_37=matdata["B0007_2"][0] + # plt.plot(range(len(x)),x) + # plt.show() + # print(x) + + + + path = last_last_last_last_path+r'\dataset\nasa\B0018_2.mat' + + matdata = scio.loadmat(path) + + CS2_38=matdata["B0018_2"][0] + # plt.plot(range(len(x)),x) + # plt.show() + + + + + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(CS2_35, linewidth=1,c='b',label="B0005_2") + ax.plot(CS2_36, linewidth=1,c='g',label="B0006_2") + ax.plot(CS2_37, linewidth=1,c='y',label="B0007_2") + ax.plot(CS2_38, linewidth=1,c='r',label="B0018_2") + + # 显示图形 + font1 = { + 'weight' : 'normal', + 'size' : 14, + } + + + #设置横纵坐标的名称以及对应字体格式 + font2 = {#'family' : 'Times New Roman', + 'weight' : 'normal', + 'size' : 30, + } + + plt.xlabel('Cycle',font1) #X轴标签 + plt.ylabel("Capacity (Ah)",font1) #Y轴标签 + plt.legend() + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_nasa_curves_comparision.eps',dpi=800,format='eps',bbox_inches = 'tight') + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_nasa_curves_comparision.png',dpi=800,format='png',bbox_inches = 'tight') + plt.show() + + return CS2_35,CS2_36,CS2_37,CS2_38 +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() + + +import scipy.io as sio +mat_array=np.zeros((max(len(CS2_36),len(CS2_36),len(CS2_37),len(CS2_37)),4)) +CS2_35=list(np.array(CS2_35)-CS2_35[0]) +CS2_36=list(np.array(CS2_36)-CS2_36[0]) +CS2_37=list(np.array(CS2_37)-CS2_37[0]) +CS2_38=list(np.array(CS2_38)-CS2_38[0]) +mat_array[:len(CS2_36),0]=CS2_36 +mat_array[:len(CS2_36),1]=CS2_36 +mat_array[:len(CS2_37),2]=CS2_37 +mat_array[:len(CS2_37),3]=CS2_37 +mat_array=-mat_array +count=[len(CS2_36),len(CS2_36),len(CS2_37),len(CS2_37)] +sio.savemat('nasaData03061018.mat', {'KFY': mat_array,'count': count}) + + +print(CS2_35[0]) +print(CS2_36[0]) +print(CS2_37[0]) +print(CS2_38[0]) + + +# 1.8564874208181574 +# 2.035337591005598 +# 1.89105229539079 +# 1.8550045207910817 +print(CS2_35) + +CS2_35=list(np.array(CS2_35)-CS2_35[0]) +CS2_36=list(np.array(CS2_36)-CS2_36[0]) +CS2_37=list(np.array(CS2_37)-CS2_37[0]) +CS2_38=list(np.array(CS2_38)-CS2_38[0]) + +print(CS2_35) + + +print(CS2_35[0]) +print(CS2_36[0]) +print(CS2_37[0]) +print(CS2_38[0]) + +def get_health_list(CS2_35,shed): + for i in range(len(CS2_35)): + if CS2_35[i]Y_test[i]: + s=s+math.exp((Y_pred[i]-Y_test[i])/10)-1 + else: + s=s+math.exp((Y_test[i]-Y_pred[i])/13)-1 + # print('unbalanced_penalty_score{}'.format(s)) + return s + +def error_range(Y_test,Y_pred) : + Y_test =np.array(Y_test) + Y_pred =np.array(Y_pred) + + error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + # print('error range{}'.format(error_range)) + return error_range + + + +def error_list(Y_test,Y_pred) : + Y_test =np.array(Y_test) + Y_pred =np.array(Y_pred) + + error_list=Y_test-Y_pred + # Y_test =np.array(Y_test) + # Y_pred =np.array(Y_pred) + + # error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + # print('error range{}'.format(error_range)) + return list(error_list) + +print(list((error_list(groud_truth[-min_len:],Si[-min_len:]),error_list(groud_truth[-min_len:],Zhang[-min_len:]),error_list(groud_truth[-min_len:],DCNN[-min_len:]),error_list(groud_truth[-min_len:],TaFCN[-min_len:]),error_list(groud_truth[-min_len:],Our[-min_len:])))) + +print(list((rmse(Si_error[-min_len:]),rmse(Zhang_error[-min_len:]),rmse(DCNN_error[-min_len:]),rmse(TaFCN_error[-min_len:]),rmse(Our_error[-min_len:])))) +print(list((aae(Si_error[-min_len:]),aae(Zhang_error[-min_len:]),aae(DCNN_error[-min_len:]),aae(TaFCN_error[-min_len:]),aae(Our_error[-min_len:])))) +print(list((score(groud_truth[-min_len:],Si[-min_len:]),score(groud_truth[-min_len:],Zhang[-min_len:]),score(groud_truth[-min_len:],DCNN[-min_len:]),score(groud_truth[-min_len:],TaFCN[-min_len:]),score(groud_truth[-min_len:],Our[-min_len:])))) +print(list((error_range(groud_truth[-min_len:],Si[-min_len:]),error_range(groud_truth[-min_len:],Zhang[-min_len:]),error_range(groud_truth[-min_len:],DCNN[-min_len:]),error_range(groud_truth[-min_len:],TaFCN[-min_len:]),error_range(groud_truth[-min_len:],Our[-min_len:])))) + + + +def predcition(targets,predictions): + targets=np.array(targets) + predictions=np.array(predictions) + + + # targets=np.array(targets) + # predictions=np.array(predictions) + + + + smape = np.sum( np.abs(predictions - targets)) /np.sum( np.abs( targets)) * 100 + print(np.sum( np.abs(predictions - targets))) + + print(np.sum( np.abs( targets))) + + print(smape) + y=100-smape + + # print(y) + return y + +print(list((predcition(groud_truth[-min_len:],Si[-min_len:]),predcition(groud_truth[-min_len:],Zhang[-min_len:]),predcition(groud_truth[-min_len:],DCNN[-min_len:]),predcition(groud_truth[-min_len:],TaFCN[-min_len:]),predcition(groud_truth[-min_len:],Our[-min_len:])))) + + +# 显示图形 +font1 = { +'weight' : 'normal', +'size' : 14, +} + + + #设置横纵坐标的名称以及对应字体格式 +font2 = {#'family' : 'Times New Roman', +'weight' : 'normal', +'size' : 30, +} +error_rate=0.4 +error_rate_1=0.8 +plt.fill_between(np.arange(min_len,0,-1), np.array(np.arange(min_len,0,-1))*(error_rate), np.arange(min_len,0,-1)*0,color="#CCCCCC",label='Error band (±{:.0%})'.format(error_rate))# color="#CCEEFF") +plt.fill_between(np.arange(min_len,0,-1), np.array(np.arange(min_len,0,-1))*(error_rate), np.array(np.arange(min_len,0,-1))*(error_rate_1),color="#E7E7E7",label='Error band (±{:.0%})'.format(error_rate_1))# color="#CCEEFF") +plt.xlabel('Actual RUL (cycle)',font1) #X轴标签 +plt.ylabel("Absolute prediction error (cycle)",font1) #Y轴标签 +plt.gca().invert_xaxis() +plt.grid(alpha=0.5,linestyle='-.') #网格线,更好看 +plt.legend() +plt.savefig(last_last_last_path+r'\figure\by_code\The_absolute_error_of_predicted_RUL_nasa_6_7.eps',dpi=800,format='eps',bbox_inches = 'tight') +plt.savefig(last_last_last_path+r'\figure\by_code\The_absolute_error_of_predicted_RUL_nasa_6_7.png',dpi=800,format='png',bbox_inches = 'tight') +plt.show() + + diff --git a/code/comparison experiments/nasa/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt b/code/comparison experiments/nasa/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt new file mode 100644 index 0000000..c84ed61 --- /dev/null +++ b/code/comparison experiments/nasa/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt @@ -0,0 +1,806 @@ +2023-03-22 19:18:03,735 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,736 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,825 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,826 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,460 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,461 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,553 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,553 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:20:00,213 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. + +2023-03-22 19:20:00,235 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:3980: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead. + +2023-03-22 19:20:00,241 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. + +2023-03-22 19:20:00,258 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead. + +2023-03-22 19:20:00,312 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead. + +2023-03-22 19:20:00,313 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead. + +2023-03-22 19:20:00,314 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:186: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead. + +2023-03-22 19:20:02,670 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. + +2023-03-22 19:20:02,671 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead. + +2023-03-22 19:20:02,901 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead. + +2023-03-22 19:20:02,940 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead. + +2023-03-22 19:20:02,990 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:133: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. + +2023-03-22 19:20:03,741 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead. + +2023-03-22 19:20:03,983 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\ops\math_grad.py:1424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. +Instructions for updating: +Use tf.where in 2.0, which has the same broadcast rule as np.where +2023-03-22 19:20:04,011 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead. + +2023-03-22 19:20:04,216 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead. + +2023-03-22 19:22:47,451 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,452 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,545 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,546 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:52,870 - matplotlib.font_manager - DEBUG -findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0. +2023-03-22 19:22:52,871 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,871 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,872 - matplotlib.font_manager - DEBUG -findfont: score() = 1.05 +2023-03-22 19:22:52,873 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,874 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,874 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,875 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,875 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,877 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,877 - matplotlib.font_manager - DEBUG -findfont: score() = 0.33499999999999996 +2023-03-22 19:22:52,878 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,878 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,879 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,880 - matplotlib.font_manager - DEBUG -findfont: score() = 0.05 +2023-03-22 19:22:52,880 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,882 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,882 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,883 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,883 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,885 - matplotlib.font_manager - DEBUG -findfont: score() = 1.335 +2023-03-22 19:22:52,885 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,886 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,886 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,887 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,887 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,888 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,890 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,890 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,891 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,891 - matplotlib.font_manager - DEBUG -findfont: score() = 10.43 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,893 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,893 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,894 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,894 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,895 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,895 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,896 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,896 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,897 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,897 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,899 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,899 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,900 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,900 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 11.525 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,902 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,902 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,903 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,903 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,904 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,904 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:52,905 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,905 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,906 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,906 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,908 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,908 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,909 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,909 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,911 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,911 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,912 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,912 - matplotlib.font_manager - DEBUG -findfont: score() = 10.44 +2023-03-22 19:22:52,913 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,913 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 11.25 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,915 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,915 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,916 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,916 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,917 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,917 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,918 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,918 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,920 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,920 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,921 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,921 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,923 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:52,923 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,925 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,925 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:52,926 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,926 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,928 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,928 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,929 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,931 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,931 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,932 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,932 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,933 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,933 - matplotlib.font_manager - DEBUG -findfont: score() = 3.9713636363636367 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,935 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,935 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,936 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,936 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 3.6863636363636365 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,938 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 4.971363636363637 +2023-03-22 19:22:52,940 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,940 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,941 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,941 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,943 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,943 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,944 - matplotlib.font_manager - DEBUG -findfont: score() = 6.888636363636364 +2023-03-22 19:22:52,944 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,946 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,946 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,947 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,947 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,948 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,948 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,949 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,950 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,950 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,952 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,952 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,954 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,954 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,955 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,955 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,957 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,957 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,959 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,959 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,960 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,960 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,961 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,961 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,962 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,962 - matplotlib.font_manager - DEBUG -findfont: score() = 7.8986363636363635 +2023-03-22 19:22:52,963 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,963 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,965 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,965 - matplotlib.font_manager - DEBUG -findfont: score() = 6.698636363636363 +2023-03-22 19:22:52,966 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,966 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,968 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,968 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,969 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,969 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,970 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,970 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,972 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,972 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,973 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,973 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,975 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,975 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,976 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,976 - matplotlib.font_manager - DEBUG -findfont: score() = 11.43 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,978 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,979 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,979 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,980 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,980 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,981 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,981 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,983 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,983 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,984 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,984 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,986 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,986 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,987 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,987 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,989 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,989 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,991 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,991 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,992 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,992 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,994 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,995 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,995 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,996 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,996 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,997 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,997 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,998 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,998 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,000 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,000 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,001 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,001 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,003 - matplotlib.font_manager - DEBUG -findfont: score() = 10.344999999999999 +2023-03-22 19:22:53,003 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,004 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,004 - matplotlib.font_manager - DEBUG -findfont: score() = 11.525 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,006 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,006 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 4.6863636363636365 +2023-03-22 19:22:53,008 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,008 - matplotlib.font_manager - DEBUG -findfont: score() = 7.698636363636363 +2023-03-22 19:22:53,009 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,009 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,010 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,010 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,011 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:53,011 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,012 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,012 - matplotlib.font_manager - DEBUG -findfont: score() = 6.413636363636363 +2023-03-22 19:22:53,013 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,013 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,014 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,014 - matplotlib.font_manager - DEBUG -findfont: score() = 7.413636363636363 +2023-03-22 19:22:53,015 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,015 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,016 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,016 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,018 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,018 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,020 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,020 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,021 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,021 - matplotlib.font_manager - DEBUG -findfont: score() = 7.613636363636363 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,023 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,023 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:53,024 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,024 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,025 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,025 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,026 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,026 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,027 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,027 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,028 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,028 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,029 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,029 - matplotlib.font_manager - DEBUG -findfont: score() = 6.8986363636363635 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,031 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,031 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,032 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,032 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 6.613636363636363 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,034 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,034 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:53,036 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,036 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,037 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,037 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,039 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,039 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,040 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,042 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,057 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,058 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,058 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:53,060 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,060 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,063 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 11.535 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,065 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,065 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,067 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,067 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,069 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,069 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,070 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,070 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,071 - matplotlib.font_manager - DEBUG -findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0 to DejaVu Sans ('C:\\Users\\Administrator\\anaconda3\\envs\\python36\\lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +2023-03-22 19:23:05,774 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,776 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,778 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,779 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,781 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,782 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,783 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,784 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,785 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,786 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,787 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,788 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,789 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,791 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,792 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,793 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,794 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,795 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,796 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,798 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,799 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:24:47,221 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,222 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,315 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,316 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,075 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,075 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,162 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,163 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,081 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,082 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,176 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,177 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,240 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,240 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,332 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,333 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,010 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,010 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,097 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,097 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,407 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,408 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,505 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,506 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,126 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,126 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,215 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,216 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,143 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,144 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,243 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,244 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,337 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,338 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,432 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,433 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,170 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,170 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,264 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,265 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,578 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,579 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,674 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,675 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,053 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,054 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,144 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,145 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:20,912 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:20,913 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:21,006 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:21,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,422 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,423 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,515 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,517 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,455 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,456 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,550 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,551 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,408 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,409 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,496 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,497 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,883 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,884 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,970 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,971 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:51,988 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:51,989 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:52,080 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:52,081 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:13,943 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:13,944 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:14,041 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:14,042 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,890 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,891 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,983 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,985 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:44,983 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:44,984 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:45,071 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:45,072 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:58,916 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:58,917 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:59,006 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:59,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,073 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,074 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,166 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,168 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:19,894 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:19,897 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:20,005 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:20,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. diff --git a/code/comparison experiments/nasa/tafcn2022/TaFCN.py b/code/comparison experiments/nasa/tafcn2022/TaFCN.py new file mode 100644 index 0000000..955864b --- /dev/null +++ b/code/comparison experiments/nasa/tafcn2022/TaFCN.py @@ -0,0 +1,730 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Mar 22 16:37:59 2023 + +@author: Administrator +""" + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + + +shed=-0.45 + +import numpy as np +import pandas as pd +import os +import pickle +import scipy as sp +import datetime + + +import numpy as np + +import scipy as sp + +import math + +from numpy import matmul as mm +from math import sqrt,pi,log, exp + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + +from scipy.stats import norm + + +import scipy.io as scio + + + + +print(os.path.abspath(os.path.join(os.getcwd(), "../.."))) +last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../..")) + +print(os.path.abspath(os.path.join(os.getcwd(), ".."))) +last_path=os.path.abspath(os.path.join(os.getcwd(), "..")) + +print(os.path.abspath(os.path.join(os.getcwd(), "../../.."))) +last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) + + +print(os.path.abspath(os.path.join(os.getcwd(), "../../../.."))) +last_last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../../..")) + + +# print(os.path.abspath(os.path.join(os.getcwd(), "../../../"))) +# last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) +# def get_data_list(CS2_35_cap_dropOutlier): +# worksheet = xlrd.open_workbook('F:\桌面11.17\project\RUL_guassion\handled_dataset\CACLE\{}.xlsx'.format(CS2_35_cap_dropOutlier)) +# sheet_names= worksheet.sheet_names() +# print(sheet_names) +# CS2_35=[] +# for sheet_name in sheet_names: +# sheet = worksheet.sheet_by_name(sheet_name) +# rows = sheet.nrows # 获取行数 +# cols = sheet.ncols # 获取列数,尽管没用到 +# all_content = [] + + +# CS2_35 = sheet.col_values(0) # 获取第二列内容, 数据格式为此数据的原有格式(原:字符串,读取:字符串; 原:浮点数, 读取:浮点数) + + + +# fig, ax = plt.subplots() +# # 在生成的坐标系下画折线图 +# ax.plot(CS2_35, linewidth=1) +# # 显示图形 +# plt.show() + +# return CS2_35 + +# CS2_35=get_data_list("CS2_35_cap_dropOutlier") +# CS2_36=get_data_list("CS2_36_cap_dropOutlier") +# CS2_37=get_data_list("CS2_37_cap_dropOutlier") +# CS2_38=get_data_list("CS2_38_cap_dropOutlier") + + +def get_data_list(): + + + + + + path = last_last_last_last_path+r'\dataset\nasa\B0005_2.mat' + + matdata = scio.loadmat(path) + + CS2_35=matdata["B0005_2"][0] + # plt.plot(range(len(x)),x) + # plt.show() + + # print(x) + + + path = last_last_last_last_path+r'\dataset\nasa\B0006_2.mat' + + matdata = scio.loadmat(path) + + CS2_36=matdata["B0006_2"][0] + # plt.plot(range(len(x)),x) + # plt.show() + + # print(x) + + + path = last_last_last_last_path+r'\dataset\nasa\B0007_2.mat' + + matdata = scio.loadmat(path) + + CS2_37=matdata["B0007_2"][0] + # plt.plot(range(len(x)),x) + # plt.show() + # print(x) + + + + path = last_last_last_last_path+r'\dataset\nasa\B0018_2.mat' + + matdata = scio.loadmat(path) + + CS2_38=matdata["B0018_2"][0] + # plt.plot(range(len(x)),x) + # plt.show() + + + + + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(CS2_35, linewidth=1,c='b',label="B0005_2") + ax.plot(CS2_36, linewidth=1,c='g',label="B0006_2") + ax.plot(CS2_37, linewidth=1,c='y',label="B0007_2") + ax.plot(CS2_38, linewidth=1,c='r',label="B0018_2") + + # 显示图形 + font1 = { + 'weight' : 'normal', + 'size' : 14, + } + + + #设置横纵坐标的名称以及对应字体格式 + font2 = {#'family' : 'Times New Roman', + 'weight' : 'normal', + 'size' : 30, + } + + plt.xlabel('Cycle',font1) #X轴标签 + plt.ylabel("Capacity (Ah)",font1) #Y轴标签 + plt.legend() + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_nasa_curves_comparision.eps',dpi=800,format='eps',bbox_inches = 'tight') + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_nasa_curves_comparision.png',dpi=800,format='png',bbox_inches = 'tight') + plt.show() + + return CS2_35,CS2_36,CS2_37,CS2_38 +# CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() + +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() + + +# print(CS2_35) + +CS2_35=list(np.array(CS2_35)-CS2_35[0]) +CS2_36=list(np.array(CS2_36)-CS2_36[0]) +CS2_37=list(np.array(CS2_37)-CS2_37[0]) +CS2_38=list(np.array(CS2_38)-CS2_38[0]) + +# print(CS2_35) + + +# print(CS2_35[0]) +# print(CS2_36[0]) +# print(CS2_37[0]) +# print(CS2_38[0]) + +def get_health_list(CS2_35,shed): + for i in range(len(CS2_35)): + if CS2_35[i]Y_test[i]: + s=s+math.exp((Y_pred[i]-Y_test[i])/10)-1 + else: + s=s+math.exp((Y_test[i]-Y_pred[i])/13)-1 + print('unbalanced_penalty_score{}'.format(s)) + return s + + def error_range_1out(Y_test,Y_pred) : + error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + print('error range{}'.format(error_range)) + return error_range + + + + X_train=X_train.reshape(X_train.shape[0],X_train.shape[1],1,1) + + X_test=X_test.reshape(X_test.shape[0],X_train.shape[1],1,1) + + # x_train_array , y_train_array , x_test_array , y_test_array=get_input_out_2(CS2_36,CS2_37,20) + + + + import six + + import keras.backend as K + from keras.utils.generic_utils import deserialize_keras_object + from keras.utils.generic_utils import serialize_keras_object + from tensorflow.python.ops import math_ops + from tensorflow.python.util.tf_export import tf_export + + + + + + from tensorflow.python.ops import math_ops + + + + + + + #########np.greater_equal([4, 2, 1], [2, 2, 2])array([ True, True, False]) + #############tf.cast( ) 或者K.cast( ) 是执行 tensorflow 中的张量数据类型转换,比如读入的图片是int8类型的,一定要在训练的时候把图片的数据格式转换为float32. + + ################reduce_sum reduce dimensinality and get sum + + + + + #return inputs*x + + + + + + + # reshape_size=len(FD_feature_columns)*int((sequence_length/3)) + def FCN_model(): + # in0 = keras.Input(shape=(sequence_length,train_feature_slice.shape[1])) # shape: (batch_size, 3, 2048) + # in0_shaped= keras.layers.Reshape((train_feature_slice.shape[1],sequence_length,1))(in0) + + in0 = keras.Input(shape=(X_train.shape[1],X_train.shape[2],X_train.shape[3]),name='layer_13') # shape: (batch_size, 3, 2048) + # begin_senet=SeBlock()(in0) + x = keras.layers.AveragePooling2D(pool_size=(int(sequence_length/segment), 1), strides=int(sequence_length/segment),name='layer_12')(in0) + # x = keras.layers.Reshape((-1,1))(x) + + # x = keras.layers.Reshape((len(FD_feature_columns)*int((sequence_length/3)),))(x) + x = keras.layers.Reshape((-1,))(x) + # x = keras.layers.GlobalAveragePooling2D()(in0) + x = keras.layers.Dense(1, use_bias=False,activation=keras.activations.relu)(x) + kernel = keras.layers.Dense(1, use_bias=False,activation=keras.activations.hard_sigmoid,name='layer_11')(x) + begin_senet= keras.layers.Multiply(name='layer_10')([in0,kernel]) #给通道加权重 + + + + + # conv0 = keras.layers. + + + conv0 = keras.layers.Conv2D(num_filter1, kernel1_size, strides=1, padding='same',name='layer_9')(begin_senet) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_8')(conv0) + + # conv0 = keras.layers.Dropout(dropout)(conv0) + conv0 = keras.layers.Conv2D(num_filter2, kernel2_size, strides=1, padding='same',name='layer_7')(conv0) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_6')(conv0) + + # conv0 = keras.layers.Dropout(dropout)(conv0) + conv0 = keras.layers.Conv2D(num_filter3, kernel3_size, strides=1, padding='same',name='layer_5')(conv0) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_4')(conv0) + conv0 = keras.layers.GlobalAveragePooling2D(name='layer_3')(conv0) + conv0 = keras.layers.Dense(64, activation='relu',name='layer_2')(conv0) + out = keras.layers.Dense(1, activation='relu',name='layer_1')(conv0) + + + + + + + model = keras.models.Model(inputs=in0, outputs=[out]) + + return model + + + # ##############shuaffle the data + np.random.seed(seed) + index=np.arange(X_train.shape[0]) + np.random.shuffle(index,) + + + X_train=X_train[index]#X_train是训练集,y_train是训练标签 + Y_train=Y_train[index] + + #X_train, Xtest, Y_train, ytest = train_test_split(X_train, Y_train, test_size=0.7, random_state=0) + + + if __name__ == '__main__': + + error_record=[] + index_record=[] + unbalanced_penalty_score_record=[] + error_range_left_record=[] + error_range_right_record=[] + index_min_val_loss_record,min_val_loss_record=[],[] + + if os.path.exists(r"F:\桌面11.17\project\RUL\experiments_result\method_error_txt\{}.txt".format(method_name)):os.remove(r"F:\桌面11.17\project\RUL\experiments_result\method_error_txt\{}.txt".format(method_name)) + + + + + + rul_pred_array_list=[] + true_out_array_list=[] + error_pred_array_list=[] + + ####### single output + + for i in range(run_times): + print('xxx') + + model=FCN_model() + plot_model(model, to_file=r"F:\桌面11.17\project\RUL\Flatten.png", show_shapes=True)#########to_file='Flatten.png',r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5 + + optimizer = keras.optimizers.Adam() + model.compile(loss='mse',#loss=root_mean_squared_error, + optimizer=optimizer, + metrics=[root_mean_squared_error]) + + reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor = 'loss', factor=0.5, + patience=patience_reduce_lr, min_lr=0.0001) + + + # verbose=1, validation_split=VALIDATION_SPLIT, callbacks = [reduce_lr]) + model_name='{}_dataset_{}_log{}_time{}'.format(method_name,dataset,i,datetime.datetime.now().strftime('%Y%m%d%H%M%S')) + earlystopping=keras.callbacks.EarlyStopping(monitor='loss',patience=patience,verbose=1) + modelcheckpoint=keras.callbacks.ModelCheckpoint(monitor='loss',filepath=r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),save_best_only=True,verbose=1) + hist = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epochs, + verbose=1, validation_data=(X_test, Y_test), callbacks = [reduce_lr,earlystopping,modelcheckpoint]) + # hist = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epochs, + # verbose=1, validation_data=(X_test, Y_test), callbacks = [reduce_lr,earlystopping,modelcheckpoint]) + log = pd.DataFrame(hist.history) + log.to_excel(r"F:\桌面11.17\project\RUL\experiments_result\log\{}_dataset_{}_log{}_time{}.xlsx".format(method_name,dataset,i,datetime.datetime.now().strftime('%Y%m%d%H%M%S'))) + + print(hist.history.keys()) + epochs=range(len(hist.history['loss'])) + plt.figure() + plt.plot(epochs,hist.history['loss'],'b',label='Training loss') + plt.plot(epochs,hist.history['val_loss'],'r',label='Validation val_loss') + plt.title('Traing and Validation loss') + plt.legend() + plt.show() + + + + # model=keras.models.load_model(r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),custom_objects={'root_mean_squared_error': root_mean_squared_error,'Smooth':Smooth,'SeBlock':SeBlock}) + model=keras.models.load_model(r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),custom_objects={'root_mean_squared_error': root_mean_squared_error}) + for layer in model.layers: + layer.trainable=False + # score = model.evaluate(X_test, Y_test) ############forbid evaluate!!!!!!!!!!!!!!!!!! + # print('score[1]:{}'.format(score[1])) ############forbid evaluate!!!!!!!!!!!!!!!!!! + + Y_pred=model.predict(X_test) + # rmse=root_mean_squared_error(Y_test,Y_pred) + # with tf.Session() as sess: + # print(rmse.eval()) + rmse_value=rmse(Y_test,Y_pred) + # print('rmse:{}'.format(rmse_value)) + + + rul_pred_array=np.array(Y_pred) + rul_pred_array=rul_pred_array.reshape(rul_pred_array.shape[0]) + + # print(rul_pred_array.shape) + + true_out_array=np.array(Y_test) + + error_pred_array=rul_pred_array-true_out_array + + error_pred_array=np.maximum(error_pred_array, -error_pred_array) + # print(sol.x) + + # print(error_pred_array.sum()) + # print("xxxxx") + # print(error_pred_array) + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(error_pred_array, linewidth=1) + + + + # 显示图形 + plt.show() + + + # print(i) + # print("rul_pred_array") + # print(list(rul_pred_array)) + # print("true_out_array") + # print(list(true_out_array)) + # print("error_pred_array") + # print(list(error_pred_array)) + + rul_pred_array_list.append(rul_pred_array) + true_out_array_list.append(true_out_array) + error_pred_array_list.append(error_pred_array) + rul_pred_array=np.mean(rul_pred_array_list,axis=0) + true_out_array=np.mean(true_out_array_list,axis=0) + error_pred_array=np.mean(error_pred_array_list,axis=0) + + + print(i) + print("rul_pred_array") + print(list(rul_pred_array)) + print("true_out_array") + print(list(true_out_array)) + print("error_pred_array") + print(list(error_pred_array)) + + diff --git a/code/comparison experiments/xiandao/DPA_our_method/DPA.py b/code/comparison experiments/xiandao/DPA_our_method/DPA.py new file mode 100644 index 0000000..7f3b9b6 --- /dev/null +++ b/code/comparison experiments/xiandao/DPA_our_method/DPA.py @@ -0,0 +1,418 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Mar 20 16:46:05 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 19 22:07:49 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 19 20:41:41 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sat Mar 18 13:04:56 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 16:49:17 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 16:26:02 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 1 14:28:22 2022 + +@author: Administrator +""" +# -*- coding: utf-8 -*- +""" +Created on Sun Jul 31 18:17:31 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Sat Jul 30 14:50:53 2022 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Thu Jul 28 14:55:56 2022 + +@author: Administrator + +""" + + + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + + +shed=-175 + + +import numpy as np +import pandas as pd +import os +import pickle +import scipy as sp +import datetime + + +import numpy as np + +import scipy as sp + +import math + +from numpy import matmul as mm +from math import sqrt,pi,log, exp + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + +from scipy.stats import norm + + +import scipy.io as scio + + + + +print(os.path.abspath(os.path.join(os.getcwd(), "../.."))) +last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../..")) + +print(os.path.abspath(os.path.join(os.getcwd(), ".."))) +last_path=os.path.abspath(os.path.join(os.getcwd(), "..")) + +print(os.path.abspath(os.path.join(os.getcwd(), "../../.."))) +last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) + + +print(os.path.abspath(os.path.join(os.getcwd(), "../../../.."))) +last_last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../../..")) + + + + + +def get_data_list(): + + + + CS2_35=[39.6435188,41.73550651,43.70386749,45.59752512,47.44376057,49.22414953,50.94063898,52.59512744,54.18946618,55.72546025,57.20486968,58.62941047,60.00075568,61.32053643,62.59034292,63.81172539,64.98619508,66.11522516,67.20025165,68.24267429,69.24385741,70.2051308,71.12779051,72.01309967,72.86228928,73.67655898,74.4570778,75.20507849,75.94243447,76.66800439,77.38074463,78.07970525,78.76402602,79.43293254,80.08573257,80.72181228,81.3406328,81.9417267,82.52469474,83.08920252,83.63497739,84.16180538,84.66952821,85.15804041,85.62728657,86.07725857,86.50799299,86.91956854,87.31210365,87.68575403,88.04071039,88.37719619,88.69546552,88.99580098,89.27851166,89.54393124,89.79241606,90.02434336,90.24010948,90.44012824,90.62482925,90.79465641,90.95006638,91.09152714,91.21951663,91.33452138,91.43703525,91.52755821,91.6065952,91.67465492,91.73224887,91.77989023,91.81809293,91.84737073,91.86823627,91.88120029,91.88688229,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.99348548,92.12454651,92.25519913,92.38528194,92.51464058,92.64312776,92.77060337,92.89693457,93.02199582,93.14566892,93.26784304,93.38841476,93.50728797,93.62437397,93.73959135,93.85286598,93.96413095,94.0733265,94.18039996,94.28530563,94.3880047,94.48846517,94.58666168,94.68257544,94.77619407,94.87901865,95.03217647,95.18676599,95.34278076,95.50021455,95.65906133,95.81931527,95.98097074,96.14402231,96.3084647,96.49096621,96.71010318,96.93286811,97.15923479,97.38917506,97.62265881,97.85965413,98.10012733,98.34404302,98.59136424,98.84205245,99.09606759,99.35336831,99.61391177,99.87765393,100.1445496,100.4145523,100.6876147,100.9636882,101.2427235,101.5246703,101.8094774,102.0970931,102.3874649,102.6805395,102.9762632,103.2745819,103.5754409,103.8787851,104.1845593,104.4927078,104.8031748,105.1159044,105.4308406,105.7479272,106.0671083,106.3883279,106.7115303,107.0366596,107.3636608,107.6924786,108.0230583,108.3553457,108.6892868,109.0248284,109.3619176,109.7005022,110.0405307,110.3819523,110.7247168,111.0687749,111.4140781,111.7605789,112.1082306,112.4569874,112.8068047,113.1576388,113.5094471,113.8621881,114.2158217,114.5703086,114.9256111,115.2816925,115.6385177,115.9960525,116.3542646,116.7131227,117.072597,117.4326594,117.793283,118.1544425,118.5161143,118.8782761,119.2409074,119.6039892,119.9675041,120.3314367,120.6957727,121.0604999,121.4256078,121.7910874,122.1569315,122.5231349,122.8896939,123.2566067,123.6238731,123.9914949,124.3594757,124.7278208,125.0965374,125.4656343,125.8351225,126.2050145,126.5753248,126.9460695,127.3172667,127.6889364,128.0611002,128.4337816,128.8070058,129.1807998,129.5551926,129.9302146,130.3058983,130.6822776,131.0593884,131.4372681,131.8159558,132.1954926,132.5759206,132.9572842,133.3396289,133.723002,134.1074524,134.4930303,134.8797876,135.2677775,135.6570549,136.0476757,136.4396975,136.8331792,137.2281807,137.6247635,138.0229903,138.4229246,138.8246317,139.2281774,139.6336288,140.0410542,140.4505224,140.8621036,141.2758687,141.6918894,142.1102381,142.5309883,142.9542136,143.3799888,143.808389,144.2394899,144.6733675,145.1100985,145.5497597,145.9924284,146.4381821,146.8870983,147.3392549,147.7947297,148.2536005,148.7159452,149.1818414,149.6513666,150.124598,150.6016127,151.0824871,151.5672974,152.0561191,152.5490275,153.0460967,153.5474006,154.0530121,154.5630033,155.0774454,155.5964086,156.119962,156.6481737,157.1811105,157.7188382,158.2614209,158.8089216,159.3614017,159.9189212,160.4815383,161.0493096,161.6222903,162.2005332,162.7840897,163.373009,163.9673384,164.5671231,165.1724063] + + CS2_36=[24.21603668,27.76392576,31.05812474,34.11272657,36.94126062,39.55670907,41.97152296,44.19763785,46.24648927,48.12902763,49.85573305,51.43662963,52.88129959,54.19889697,55.39816113,56.48742985,57.47465218,58.36740102,59.17288536,59.89796229,60.54914868,61.13263263,61.65428459,62.11966834,62.53405155,62.90241619,63.22946866,63.51964968,63.77986482,64.02124681,64.24612443,64.45667649,64.6549378,64.84280487,65.02204165,65.19428489,65.36104955,65.52373394,65.68362478,65.84190207,65.99964387,66.15783094,66.31735119,66.47900406,66.64350478,66.81148844,66.983514,67.16006816,67.34156907,67.52837002,67.72076293,67.91898175,68.12320577,68.33356283,68.55013239,68.77294851,69.00200277,69.23724705,69.47859619,69.72593064,69.97909895,70.23792017,70.50218623,70.77166413,71.04609814,71.32521189,71.62235332,72.01186156,72.41093197,72.81906332,73.23573249,73.66039698,74.09249736,74.53145956,74.97669714,75.42761342,75.88360347,76.34405616,76.80835594,77.27588467,77.7460233,78.21815351,78.69165919,79.16592799,79.64035262,80.11433222,80.58727357,81.05859228,81.52771389,81.9940749,82.45712376,82.91632177,83.37114395,83.82107982,84.26563414,84.7043276,85.13669743,85.562298,85.98070136,86.39149766,86.79429563,87.18872298,87.57442667,87.95107329,88.31834924,88.67596103,89.02363537,89.3611194,89.6881807,90.00460745,90.3102084,90.60481293,90.88827096,91.16045296,91.42124983,91.67057279,91.90835323,92.13454258,92.34911212,92.55205274,92.74337473,92.92310751,93.0942088,93.25737267,93.41259973,93.55990377,93.69931161,93.8308629,93.95460987,94.07061711,94.17896129,94.27973097,94.3730263,94.45895874,94.53765081,94.60923579,94.67537072,94.73773813,94.79638462,94.85136201,94.90272718,94.95054198,94.99487308,95.03579181,95.07337407,95.10770016,95.13885463,95.16692615,95.19200739,95.21419481,95.23358857,95.25029236,95.26441323,95.27606148,95.28535047,95.29239651,95.29731865,95.30023858,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.33521881,95.37337294,95.41511465,95.55435079,95.71377564,95.88296678,96.06207811,96.25125625,96.4506404,96.6603623,96.97094911,97.36193722,97.76950693,98.19375769,98.6347772,99.09264146,99.56741468,100.0591493,100.567886,101.0936539,101.6364702,102.1963406,102.7732591,103.3672081,103.9781587,104.6060704,105.2508912,105.9125583,106.5909971,107.2861225,107.997838,108.7260364,109.4706,110.2314,111.0082975,111.8011431,112.6097773,113.4340305,114.2737233,115.1286665,115.9986614,116.8835001,117.7829651,118.6968305,119.6248611,120.5668133,121.5224352,122.4914666,123.4736392,124.4686773,125.4762972,126.4962082,127.5281125,128.5717052,129.6266751,130.6927044,131.7694691,132.8566394,133.9538799,135.0608497,136.1772027,137.3025878,138.4366496,139.5790278,140.7293584,141.8872733,143.0524007,144.2243656,145.4027897,146.587292,147.7774889,148.9729945,150.1734206,151.3783777,152.5874742,153.8003175,155.0165141,156.2356696,157.457389,158.6812774,159.9069395,161.1339807,162.3620068,163.5906241,164.8194404,166.0480645,167.2761068,168.5031796,169.7288971,170.9528758,172.1747347,173.3940956,174.6105832,175.8238256,177.033454,178.2391036,179.4404132,180.6370259,181.828589,183.0147543,184.1951785,185.3695228,186.5374541,187.6986441,188.8527702,189.9995156,191.1385693,192.2696262,193.3923874,194.5065607,195.6118601,196.7080065,197.7947275,198.8717578,199.938839,200.9957205,202.0421585,203.0779171] + + CS2_37=[29.10206571,37.72371374,46.30597344,54.85235886,56.62552062,58.36924525,60.0864704,61.77995584,63.99136847,66.1840545,68.36028042,70.5221612,71.42482968,72.3169529,73.20022769,74.07622309,74.94638596,75.81204639,76.67442293,77.53462772,78.06032948,78.58578435,79.1118146,79.63915516,80.16845805,80.70029674,81.23517027,81.7735073,82.31567006,82.86195812,83.41261208,83.96781717,84.43206697,84.90108576,85.37491275,85.85354489,86.33693981,86.82501875,87.3176694,87.81474849,88.31608449,88.82148004,89.33071439,89.84354565,90.3597131,90.87893921,91.40093175,91.92538572,92.45198521,92.98040518,93.51031314,94.04137091,94.57323595,95.10556296,95.63800534,96.17021635,96.70185045,97.23256457,97.76201907,98.28987884,98.81581444,99.33950279,99.86062827,100.3788833,100.799267,101.2161926,101.6293813,102.0385652,102.4434876,102.8439039,103.2395815,103.6303009,104.0158552,104.396051,104.7707085,105.139662,105.5027592,105.8598624,106.2108481,106.5556068,106.8940438,107.2260783,107.5516441,107.8706892,108.1831756,108.4890795,108.788391,109.0811137,109.367265,109.6468755,109.9199887,110.186661,110.4469615,110.7009711,110.9487829,111.1905014,111.3580991,111.5198456,111.6758782,111.8263436,111.9713985,112.1112087,112.2459489,112.3782155,112.5104821,112.6427487,112.7750153,112.9072819,113.0395485,113.1718151,113.3040817,113.4363483,113.5686149,113.7008816,113.8331482,113.9654148,114.0976814,114.229948,114.3622146,114.4944812,114.6267478,114.7590144,114.891281,115.0235477,115.1558143,115.2880809,115.4203475,115.5526141,115.6475159,115.7424177,115.8373195,115.9322214,116.0271232,116.122025,116.2169268,116.3118286,116.4067305,116.5016323,116.5965341,116.6914359,116.7863377,116.8812396,116.9761414,117.0710432,117.165945,117.2608468,117.3557486,117.4506505,117.5455523,117.6404541,117.735356,117.8302578,117.9251596,118.0200614,118.1149632,118.209865,118.3047668,118.3996687,118.4945705,118.5894723,118.7430791,118.8966859,119.0502928,119.2038996,119.3575064,119.5111132,119.66472,119.8183269,119.9719337,120.1255405,120.3410954,120.6199926,120.9031699,121.1905016,121.4818542,121.7770873,122.0760531,122.3785971,122.6845585,122.9937702,123.3060594,123.6212477,123.9391517,124.259583,124.582349,124.9072533,125.2340954,125.5626719,125.8927766,126.2242007,126.5567339,126.890164,127.5350476,128.1804012,128.8260108,129.4716627,130.1171441,130.7622433,131.4067503,132.0504575,132.6931595,133.3346546,133.9747441,134.613234,135.2499343,135.8846604,136.5172331,137.1474793,137.775232,138.4003314,139.0226251,139.6419683,140.2582245,140.871266,141.4809741,142.0872396,142.6899633,143.2890561,143.8844398,144.4760473,145.0638225,145.6477213,146.2277117,146.8037739,147.7231425,148.6385812,149.5501089,150.4577574,151.3615723,152.2616127,153.1579516,154.0506758,154.9398859,155.8256967,156.7082371,157.5876498,158.4640915,159.3377331,160.2087588,161.0773667,161.9437682,162.808188,163.6708636,164.532045,165.3919945,166.2509863,167.1093059,167.9672494,168.8251236,169.6832447,170.5419378,171.4015367,172.2623823,173.1248225,173.9892108,174.8559057,175.4924136,176.1319554,176.7748977,177.4216077,178.0724516,178.7277933,179.3879931,180.0534062,180.724381,181.4012578,182.0843664,182.7740249,183.4705376,184.1741929,184.8852616,185.6039941,186.3306187,187.0653393,187.8083325,188.5597454,189.3196931,190.0882554,190.8654747,191.6513525,192.4458466,193.2488681,194.0602778,194.8798829,195.7074339,196.5426204,197.385068,198.2343338,198.9538561,199.6790907,200.4093662,201.1439264,201.8819257,202.6224249,203.3643859,204.1066673,204.8480193,205.5870782,206.3223613,207.0522618,207.7750424,208.4888303,209.1916107,209.8812214,210.5553457,211.2115068,211.8470607,212.4591899,213.0448962,213.6009936,214.1241015,214.6106366,215.0568061,215.4995219,215.9422376] + + CS2_38=[29.10206571,37.72371374,46.30597344,54.85235886,56.62552062,58.36924525,60.0864704,61.77995584,63.99136847,66.1840545,68.36028042,70.5221612,71.42482968,72.3169529,73.20022769,74.07622309,74.94638596,75.81204639,76.67442293,77.53462772,78.06032948,78.58578435,79.1118146,79.63915516,80.16845805,80.70029674,81.23517027,81.7735073,82.31567006,82.86195812,83.41261208,83.96781717,84.43206697,84.90108576,85.37491275,85.85354489,86.33693981,86.82501875,87.3176694,87.81474849,88.31608449,88.82148004,89.33071439,89.84354565,90.3597131,90.87893921,91.40093175,91.92538572,92.45198521,92.98040518,93.51031314,94.04137091,94.57323595,95.10556296,95.63800534,96.17021635,96.70185045,97.23256457,97.76201907,98.28987884,98.81581444,99.33950279,99.86062827,100.3788833,100.799267,101.2161926,101.6293813,102.0385652,102.4434876,102.8439039,103.2395815,103.6303009,104.0158552,104.396051,104.7707085,105.139662,105.5027592,105.8598624,106.2108481,106.5556068,106.8940438,107.2260783,107.5516441,107.8706892,108.1831756,108.4890795,108.788391,109.0811137,109.367265,109.6468755,109.9199887,110.186661,110.4469615,110.7009711,110.9487829,111.1905014,111.3580991,111.5198456,111.6758782,111.8263436,111.9713985,112.1112087,112.2459489,112.3782155,112.5104821,112.6427487,112.7750153,112.9072819,113.0395485,113.1718151,113.3040817,113.4363483,113.5686149,113.7008816,113.8331482,113.9654148,114.0976814,114.229948,114.3622146,114.4944812,114.6267478,114.7590144,114.891281,115.0235477,115.1558143,115.2880809,115.4203475,115.5526141,115.6475159,115.7424177,115.8373195,115.9322214,116.0271232,116.122025,116.2169268,116.3118286,116.4067305,116.5016323,116.5965341,116.6914359,116.7863377,116.8812396,116.9761414,117.0710432,117.165945,117.2608468,117.3557486,117.4506505,117.5455523,117.6404541,117.735356,117.8302578,117.9251596,118.0200614,118.1149632,118.209865,118.3047668,118.3996687,118.4945705,118.5894723,118.7430791,118.8966859,119.0502928,119.2038996,119.3575064,119.5111132,119.66472,119.8183269,119.9719337,120.1255405,120.3410954,120.6199926,120.9031699,121.1905016,121.4818542,121.7770873,122.0760531,122.3785971,122.6845585,122.9937702,123.3060594,123.6212477,123.9391517,124.259583,124.582349,124.9072533,125.2340954,125.5626719,125.8927766,126.2242007,126.5567339,126.890164,127.5350476,128.1804012,128.8260108,129.4716627,130.1171441,130.7622433,131.4067503,132.0504575,132.6931595,133.3346546,133.9747441,134.613234,135.2499343,135.8846604,136.5172331,137.1474793,137.775232,138.4003314,139.0226251,139.6419683,140.2582245,140.871266,141.4809741,142.0872396,142.6899633,143.2890561,143.8844398,144.4760473,145.0638225,145.6477213,146.2277117,146.8037739,147.7231425,148.6385812,149.5501089,150.4577574,151.3615723,152.2616127,153.1579516,154.0506758,154.9398859,155.8256967,156.7082371,157.5876498,158.4640915,159.3377331,160.2087588,161.0773667,161.9437682,162.808188,163.6708636,164.532045,165.3919945,166.2509863,167.1093059,167.9672494,168.8251236,169.6832447,170.5419378,171.4015367,172.2623823,173.1248225,173.9892108,174.8559057,175.4924136,176.1319554,176.7748977,177.4216077,178.0724516,178.7277933,179.3879931,180.0534062,180.724381,181.4012578,182.0843664,182.7740249,183.4705376,184.1741929,184.8852616,185.6039941,186.3306187,187.0653393,187.8083325,188.5597454,189.3196931,190.0882554,190.8654747,191.6513525,192.4458466,193.2488681,194.0602778,194.8798829,195.7074339,196.5426204,197.385068,198.2343338,198.9538561,199.6790907,200.4093662,201.1439264,201.8819257,202.6224249,203.3643859,204.1066673,204.8480193,205.5870782,206.3223613,207.0522618,207.7750424,208.4888303,209.1916107,209.8812214,210.5553457,211.2115068,211.8470607,212.4591899,213.0448962,213.6009936,214.1241015,214.6106366,215.0568061,215.4995219,215.9422376] + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(CS2_35, linewidth=1,c='b',label="c1") + ax.plot(CS2_36, linewidth=1,c='g',label="c4") + ax.plot(CS2_37, linewidth=1,c='y',label="c6") + ax.plot(CS2_38, linewidth=1,c='r',label="c6") + + # 显示图形 + font1 = { + 'weight' : 'normal', + 'size' : 14, + } + + + #设置横纵坐标的名称以及对应字体格式 + font2 = {#'family' : 'Times New Roman', + 'weight' : 'normal', + 'size' : 30, + } + + plt.xlabel('Cycle',font1) #X轴标签 + plt.ylabel("Capacity (Ah)",font1) #Y轴标签 + plt.legend() + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_IGBT_curves_comparision.eps',dpi=800,format='eps',bbox_inches = 'tight') + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_IGBT_curves_comparision.png',dpi=800,format='png',bbox_inches = 'tight') + plt.show() + + return CS2_35[:-5],CS2_36[:-5],CS2_37[:-5],CS2_38[:-5] + + + +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() + + +print(CS2_35) + +CS2_35=list(-(np.array(CS2_35)-CS2_35[0])) +CS2_36=list(-(np.array(CS2_36)-CS2_36[0])) +CS2_37=list(-(np.array(CS2_37)-CS2_37[0])) +CS2_38=list(-(np.array(CS2_38)-CS2_38[0])) + +print(CS2_35) + + +print(CS2_35[0]) +print(CS2_36[0]) +print(CS2_37[0]) +print(CS2_38[0]) + +def get_health_list(CS2_35,shed): + for i in range(len(CS2_35)): + if CS2_35[i]Y_test[i]: + s=s+math.exp((Y_pred[i]-Y_test[i])/10)-1 + else: + s=s+math.exp((Y_test[i]-Y_pred[i])/13)-1 + # print('unbalanced_penalty_score{}'.format(s)) + return s + +def error_range(Y_test,Y_pred) : + Y_test =np.array(Y_test) + Y_pred =np.array(Y_pred) + + error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + # print('error range{}'.format(error_range)) + return error_range + + +def error_list(Y_test,Y_pred) : + Y_test =np.array(Y_test) + Y_pred =np.array(Y_pred) + + error_list=Y_test-Y_pred + # Y_test =np.array(Y_test) + # Y_pred =np.array(Y_pred) + + # error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + # print('error range{}'.format(error_range)) + return list(error_list) + +print(list((error_list(groud_truth[-min_len:],Si[-min_len:]),error_list(groud_truth[-min_len:],Zhang[-min_len:]),error_list(groud_truth[-min_len:],Hu[-min_len:]),error_list(groud_truth[-min_len:],DCNN[-min_len:]),error_list(groud_truth[-min_len:],TaFCN[-min_len:]),error_list(groud_truth[-min_len:],Our[-min_len:])))) + +print(list((rmse(Si_error[-min_len:]),rmse(Zhang_error[-min_len:]),rmse(Hu_error[-min_len:]),rmse(DCNN_error[-min_len:]),rmse(TaFCN_error[-min_len:]),rmse(Our_error[-min_len:])))) +print(list((aae(Si_error[-min_len:]),aae(Zhang_error[-min_len:]),aae(Hu_error[-min_len:]),aae(DCNN_error[-min_len:]),aae(TaFCN_error[-min_len:]),aae(Our_error[-min_len:])))) +print(list((score(groud_truth[-min_len:],Si[-min_len:]),score(groud_truth[-min_len:],Zhang[-min_len:]),score(groud_truth[-min_len:],Hu[-min_len:]),score(groud_truth[-min_len:],DCNN[-min_len:]),score(groud_truth[-min_len:],TaFCN[-min_len:]),score(groud_truth[-min_len:],Our[-min_len:])))) +print(list((error_range(groud_truth[-min_len:],Si[-min_len:]),error_range(groud_truth[-min_len:],Zhang[-min_len:]),error_range(groud_truth[-min_len:],Hu[-min_len:]),error_range(groud_truth[-min_len:],DCNN[-min_len:]),error_range(groud_truth[-min_len:],TaFCN[-min_len:]),error_range(groud_truth[-min_len:],Our[-min_len:])))) +# print +def predcition(targets,predictions): + targets=np.array(targets) + predictions=np.array(predictions) + + + # targets=np.array(targets) + # predictions=np.array(predictions) + + + + smape = np.sum( np.abs(predictions - targets)) /np.sum( np.abs( targets)) * 100 + print(np.sum( np.abs(predictions - targets))) + + print(np.sum( np.abs( targets))) + + print(smape) + y=100-smape + + # print(y) + return y + +print(list((predcition(groud_truth[-min_len:],Si[-min_len:]),predcition(groud_truth[-min_len:],Zhang[-min_len:]),predcition(groud_truth[-min_len:],Hu[-min_len:]),predcition(groud_truth[-min_len:],DCNN[-min_len:]),predcition(groud_truth[-min_len:],TaFCN[-min_len:]),predcition(groud_truth[-min_len:],Our[-min_len:])))) + +# 显示图形 +font1 = { +'weight' : 'normal', +'size' : 14, +} + + + #设置横纵坐标的名称以及对应字体格式 +font2 = {#'family' : 'Times New Roman', +'weight' : 'normal', +'size' : 30, +} + +# plt.fill_between(np.arange(min_len,0,-1), np.array(np.arange(min_len,0,-1))*(error_rate), np.arange(min_len,0,-1)*0,color="#CCCCCC")# color="#CCEEFF") +error_rate=0.1 +error_rate_1=0.6 +plt.fill_between(np.arange(min_len,0,-1), np.array(np.arange(min_len,0,-1))*(error_rate), np.arange(min_len,0,-1)*0,color="#CCCCCC",label='Error band (±{:.0%})'.format(error_rate))# color="#CCEEFF") +plt.fill_between(np.arange(min_len,0,-1), np.array(np.arange(min_len,0,-1))*(error_rate), np.array(np.arange(min_len,0,-1))*(error_rate_1),color="#E7E7E7",label='Error band (±{:.0%})'.format(error_rate_1))# color="#CCEEFF") + +plt.xlabel('Actual RUL (pass)',font1) #X轴标签 +plt.ylabel("Absolute prediction error (pass)",font1) #Y轴标签 +plt.gca().invert_xaxis() +plt.grid(alpha=0.5,linestyle='-.') #网格线,更好看 + +plt.legend(loc="upper right") +# plt.ylim((-10,150)) +plt.savefig(last_last_last_path+r'\figure\by_code\The_absolute_error_of_predicted_RUL_xiandao_c1_c4_to_c6.eps',dpi=800,format='eps',bbox_inches = 'tight') +plt.savefig(last_last_last_path+r'\figure\by_code\The_absolute_error_of_predicted_RUL_xiandao_c1_c4_to_c6.png',dpi=800,format='png',bbox_inches = 'tight') +plt.show() + diff --git a/code/comparison experiments/xiandao/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt b/code/comparison experiments/xiandao/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt new file mode 100644 index 0000000..c84ed61 --- /dev/null +++ b/code/comparison experiments/xiandao/tafcn2022/LOGS-LSTM-Keras-CMAPSS.txt @@ -0,0 +1,806 @@ +2023-03-22 19:18:03,735 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,736 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,825 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:18:03,826 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,460 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,461 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,553 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:19:58,553 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:20:00,213 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. + +2023-03-22 19:20:00,235 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:3980: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead. + +2023-03-22 19:20:00,241 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. + +2023-03-22 19:20:00,258 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead. + +2023-03-22 19:20:00,312 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead. + +2023-03-22 19:20:00,313 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead. + +2023-03-22 19:20:00,314 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:186: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead. + +2023-03-22 19:20:02,670 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. + +2023-03-22 19:20:02,671 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead. + +2023-03-22 19:20:02,901 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead. + +2023-03-22 19:20:02,940 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead. + +2023-03-22 19:20:02,990 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:133: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. + +2023-03-22 19:20:03,741 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead. + +2023-03-22 19:20:03,983 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\ops\math_grad.py:1424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. +Instructions for updating: +Use tf.where in 2.0, which has the same broadcast rule as np.where +2023-03-22 19:20:04,011 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead. + +2023-03-22 19:20:04,216 - tensorflow - WARNING -From C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead. + +2023-03-22 19:22:47,451 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,452 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,545 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:47,546 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:22:52,870 - matplotlib.font_manager - DEBUG -findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0. +2023-03-22 19:22:52,871 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,871 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,872 - matplotlib.font_manager - DEBUG -findfont: score() = 1.05 +2023-03-22 19:22:52,873 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,874 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,874 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,875 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,875 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,876 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,877 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,877 - matplotlib.font_manager - DEBUG -findfont: score() = 0.33499999999999996 +2023-03-22 19:22:52,878 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,878 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,879 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,880 - matplotlib.font_manager - DEBUG -findfont: score() = 0.05 +2023-03-22 19:22:52,880 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,881 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,882 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,882 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,883 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,883 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,884 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,885 - matplotlib.font_manager - DEBUG -findfont: score() = 1.335 +2023-03-22 19:22:52,885 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,886 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,886 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,887 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,887 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,888 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,889 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,890 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,890 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,891 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,891 - matplotlib.font_manager - DEBUG -findfont: score() = 10.43 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,892 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,893 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,893 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,894 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,894 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,895 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,895 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,896 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,896 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,897 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,897 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,898 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,899 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,899 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,900 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,900 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 11.525 +2023-03-22 19:22:52,901 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,902 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,902 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,903 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,903 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,904 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,904 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:52,905 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,905 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,906 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,906 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,907 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,908 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,908 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,909 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,909 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,910 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,911 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,911 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,912 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,912 - matplotlib.font_manager - DEBUG -findfont: score() = 10.44 +2023-03-22 19:22:52,913 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,913 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 11.25 +2023-03-22 19:22:52,914 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,915 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,915 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,916 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,916 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,917 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,917 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,918 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,918 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,919 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,920 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,920 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,921 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,921 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,922 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,923 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:52,923 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,924 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,925 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,925 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:52,926 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,926 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,927 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,928 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,928 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,929 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,930 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,931 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,931 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,932 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,932 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,933 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,933 - matplotlib.font_manager - DEBUG -findfont: score() = 3.9713636363636367 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,934 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,935 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,935 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,936 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,936 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 3.6863636363636365 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,937 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,938 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,939 - matplotlib.font_manager - DEBUG -findfont: score() = 4.971363636363637 +2023-03-22 19:22:52,940 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,940 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,941 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,941 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,942 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,943 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,943 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,944 - matplotlib.font_manager - DEBUG -findfont: score() = 6.888636363636364 +2023-03-22 19:22:52,944 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,945 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,946 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,946 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,947 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,947 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,948 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,948 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,949 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,950 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,950 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,951 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,952 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,952 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,953 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,954 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,954 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,955 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,955 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,956 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,957 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,957 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,958 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,959 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,959 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,960 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,960 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,961 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,961 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,962 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,962 - matplotlib.font_manager - DEBUG -findfont: score() = 7.8986363636363635 +2023-03-22 19:22:52,963 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,963 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,964 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,965 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,965 - matplotlib.font_manager - DEBUG -findfont: score() = 6.698636363636363 +2023-03-22 19:22:52,966 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,966 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,967 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,968 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,968 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,969 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,969 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,970 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,970 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,971 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,972 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,972 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,973 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,973 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,974 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,975 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,975 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,976 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,976 - matplotlib.font_manager - DEBUG -findfont: score() = 11.43 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,977 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,978 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,979 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,979 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,980 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,980 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,981 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,981 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,982 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,983 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,983 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,984 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,984 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,985 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,986 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,986 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,987 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,987 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,988 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,989 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:52,989 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,990 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,991 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,991 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,992 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,992 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,993 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,994 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,995 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,995 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:52,996 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:52,996 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,997 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,997 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:52,998 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:52,998 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:52,999 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,000 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,000 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,001 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,001 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,002 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,003 - matplotlib.font_manager - DEBUG -findfont: score() = 10.344999999999999 +2023-03-22 19:22:53,003 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,004 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,004 - matplotlib.font_manager - DEBUG -findfont: score() = 11.525 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,005 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,006 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,006 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,007 - matplotlib.font_manager - DEBUG -findfont: score() = 4.6863636363636365 +2023-03-22 19:22:53,008 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,008 - matplotlib.font_manager - DEBUG -findfont: score() = 7.698636363636363 +2023-03-22 19:22:53,009 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,009 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,010 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,010 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,011 - matplotlib.font_manager - DEBUG -findfont: score() = 10.535 +2023-03-22 19:22:53,011 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,012 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,012 - matplotlib.font_manager - DEBUG -findfont: score() = 6.413636363636363 +2023-03-22 19:22:53,013 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,013 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,014 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,014 - matplotlib.font_manager - DEBUG -findfont: score() = 7.413636363636363 +2023-03-22 19:22:53,015 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,015 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,016 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,016 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 11.145 +2023-03-22 19:22:53,017 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,018 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,018 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,019 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,020 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,020 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,021 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,021 - matplotlib.font_manager - DEBUG -findfont: score() = 7.613636363636363 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:53,022 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,023 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,023 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:53,024 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,024 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,025 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,025 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,026 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,026 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,027 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,027 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,028 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,028 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,029 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,029 - matplotlib.font_manager - DEBUG -findfont: score() = 6.8986363636363635 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,030 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,031 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,031 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,032 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,032 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 6.613636363636363 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,033 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,034 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,034 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,035 - matplotlib.font_manager - DEBUG -findfont: score() = 10.25 +2023-03-22 19:22:53,036 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,036 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,037 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,037 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,038 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,039 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,039 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,040 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,041 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,042 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,057 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,058 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,058 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,059 - matplotlib.font_manager - DEBUG -findfont: score() = 10.145 +2023-03-22 19:22:53,060 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,060 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 11.24 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,061 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,062 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,063 - matplotlib.font_manager - DEBUG -findfont: score() = 11.05 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 11.535 +2023-03-22 19:22:53,064 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,065 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,065 - matplotlib.font_manager - DEBUG -findfont: score() = 10.525 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,066 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,067 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,067 - matplotlib.font_manager - DEBUG -findfont: score() = 11.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,068 - matplotlib.font_manager - DEBUG -findfont: score() = 10.335 +2023-03-22 19:22:53,069 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,069 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,070 - matplotlib.font_manager - DEBUG -findfont: score() = 10.24 +2023-03-22 19:22:53,070 - matplotlib.font_manager - DEBUG -findfont: score() = 10.05 +2023-03-22 19:22:53,071 - matplotlib.font_manager - DEBUG -findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0 to DejaVu Sans ('C:\\Users\\Administrator\\anaconda3\\envs\\python36\\lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +2023-03-22 19:23:05,774 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,776 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,778 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,779 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,781 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,782 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,783 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,784 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,785 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,786 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,787 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,788 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,789 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,791 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,792 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,793 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,794 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,795 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,796 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,798 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:23:05,799 - tensorflow - ERROR -================================== +Object was never used (type ): + +If you want to mark it as used call its "mark_used()" method. +It was originally created here: + File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\optimizers.py", line 126, in set_weights + param_values = K.batch_get_value(params) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 2420, in batch_get_value + return get_session().run(ops) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in get_session + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\keras\backend\tensorflow_backend.py", line 199, in + [tf.is_variable_initialized(v) for v in candidate_vars]) File "C:\Users\Administrator\anaconda3\envs\python36\lib\site-packages\tensorflow_core\python\util\tf_should_use.py", line 198, in wrapped + return _add_should_use_warning(fn(*args, **kwargs)) +================================== +2023-03-22 19:24:47,221 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,222 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,315 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:24:47,316 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,075 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,075 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,162 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:31:54,163 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,081 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,082 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,176 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:37:41,177 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,240 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,240 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,332 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:47:59,333 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,010 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,010 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,097 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:48:39,097 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,407 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,408 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,505 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:49:25,506 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,126 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,126 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,215 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:52:45,216 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,143 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,144 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,243 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:03,244 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,337 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,338 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,432 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 19:54:23,433 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,170 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,170 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,264 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:32,265 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,578 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,579 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,674 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:03:53,675 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,053 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,054 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,144 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:05:20,145 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:20,912 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:20,913 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:21,006 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:06:21,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,422 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,423 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,515 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:11:44,517 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,455 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,456 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,550 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:19:27,551 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,408 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,409 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,496 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:24:30,497 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,883 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,884 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,970 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:47,971 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:51,988 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:51,989 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:52,080 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:35:52,081 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:13,943 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:13,944 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:14,041 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:44:14,042 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,890 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,891 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,983 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:49:13,985 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:44,983 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:44,984 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:45,071 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 20:58:45,072 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:58,916 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:58,917 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:59,006 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 21:08:59,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,073 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,074 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,166 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-22 22:33:22,168 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:19,894 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:19,897 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:20,005 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. +2023-03-23 10:01:20,007 - matplotlib.backends.backend_ps - WARNING -The PostScript backend does not support transparency; partially transparent artists will be rendered opaque. diff --git a/code/comparison experiments/xiandao/tafcn2022/TaFCN.py b/code/comparison experiments/xiandao/tafcn2022/TaFCN.py new file mode 100644 index 0000000..9807390 --- /dev/null +++ b/code/comparison experiments/xiandao/tafcn2022/TaFCN.py @@ -0,0 +1,682 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Mar 22 16:37:59 2023 + +@author: Administrator +""" + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + + +shed=175 + +import numpy as np +import pandas as pd +import os +import pickle +import scipy as sp +import datetime + + +import numpy as np + +import scipy as sp + +import math + +from numpy import matmul as mm +from math import sqrt,pi,log, exp + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + +from scipy.stats import norm + + +import scipy.io as scio + + + + +print(os.path.abspath(os.path.join(os.getcwd(), "../.."))) +last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../..")) + +print(os.path.abspath(os.path.join(os.getcwd(), ".."))) +last_path=os.path.abspath(os.path.join(os.getcwd(), "..")) + +print(os.path.abspath(os.path.join(os.getcwd(), "../../.."))) +last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../..")) + + +print(os.path.abspath(os.path.join(os.getcwd(), "../../../.."))) +last_last_last_last_path=os.path.abspath(os.path.join(os.getcwd(), "../../../..")) + + + + + +def get_data_list(): + + + + CS2_35=[39.6435188,41.73550651,43.70386749,45.59752512,47.44376057,49.22414953,50.94063898,52.59512744,54.18946618,55.72546025,57.20486968,58.62941047,60.00075568,61.32053643,62.59034292,63.81172539,64.98619508,66.11522516,67.20025165,68.24267429,69.24385741,70.2051308,71.12779051,72.01309967,72.86228928,73.67655898,74.4570778,75.20507849,75.94243447,76.66800439,77.38074463,78.07970525,78.76402602,79.43293254,80.08573257,80.72181228,81.3406328,81.9417267,82.52469474,83.08920252,83.63497739,84.16180538,84.66952821,85.15804041,85.62728657,86.07725857,86.50799299,86.91956854,87.31210365,87.68575403,88.04071039,88.37719619,88.69546552,88.99580098,89.27851166,89.54393124,89.79241606,90.02434336,90.24010948,90.44012824,90.62482925,90.79465641,90.95006638,91.09152714,91.21951663,91.33452138,91.43703525,91.52755821,91.6065952,91.67465492,91.73224887,91.77989023,91.81809293,91.84737073,91.86823627,91.88120029,91.88688229,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.88839744,91.99348548,92.12454651,92.25519913,92.38528194,92.51464058,92.64312776,92.77060337,92.89693457,93.02199582,93.14566892,93.26784304,93.38841476,93.50728797,93.62437397,93.73959135,93.85286598,93.96413095,94.0733265,94.18039996,94.28530563,94.3880047,94.48846517,94.58666168,94.68257544,94.77619407,94.87901865,95.03217647,95.18676599,95.34278076,95.50021455,95.65906133,95.81931527,95.98097074,96.14402231,96.3084647,96.49096621,96.71010318,96.93286811,97.15923479,97.38917506,97.62265881,97.85965413,98.10012733,98.34404302,98.59136424,98.84205245,99.09606759,99.35336831,99.61391177,99.87765393,100.1445496,100.4145523,100.6876147,100.9636882,101.2427235,101.5246703,101.8094774,102.0970931,102.3874649,102.6805395,102.9762632,103.2745819,103.5754409,103.8787851,104.1845593,104.4927078,104.8031748,105.1159044,105.4308406,105.7479272,106.0671083,106.3883279,106.7115303,107.0366596,107.3636608,107.6924786,108.0230583,108.3553457,108.6892868,109.0248284,109.3619176,109.7005022,110.0405307,110.3819523,110.7247168,111.0687749,111.4140781,111.7605789,112.1082306,112.4569874,112.8068047,113.1576388,113.5094471,113.8621881,114.2158217,114.5703086,114.9256111,115.2816925,115.6385177,115.9960525,116.3542646,116.7131227,117.072597,117.4326594,117.793283,118.1544425,118.5161143,118.8782761,119.2409074,119.6039892,119.9675041,120.3314367,120.6957727,121.0604999,121.4256078,121.7910874,122.1569315,122.5231349,122.8896939,123.2566067,123.6238731,123.9914949,124.3594757,124.7278208,125.0965374,125.4656343,125.8351225,126.2050145,126.5753248,126.9460695,127.3172667,127.6889364,128.0611002,128.4337816,128.8070058,129.1807998,129.5551926,129.9302146,130.3058983,130.6822776,131.0593884,131.4372681,131.8159558,132.1954926,132.5759206,132.9572842,133.3396289,133.723002,134.1074524,134.4930303,134.8797876,135.2677775,135.6570549,136.0476757,136.4396975,136.8331792,137.2281807,137.6247635,138.0229903,138.4229246,138.8246317,139.2281774,139.6336288,140.0410542,140.4505224,140.8621036,141.2758687,141.6918894,142.1102381,142.5309883,142.9542136,143.3799888,143.808389,144.2394899,144.6733675,145.1100985,145.5497597,145.9924284,146.4381821,146.8870983,147.3392549,147.7947297,148.2536005,148.7159452,149.1818414,149.6513666,150.124598,150.6016127,151.0824871,151.5672974,152.0561191,152.5490275,153.0460967,153.5474006,154.0530121,154.5630033,155.0774454,155.5964086,156.119962,156.6481737,157.1811105,157.7188382,158.2614209,158.8089216,159.3614017,159.9189212,160.4815383,161.0493096,161.6222903,162.2005332,162.7840897,163.373009,163.9673384,164.5671231,165.1724063] + + CS2_36=[24.21603668,27.76392576,31.05812474,34.11272657,36.94126062,39.55670907,41.97152296,44.19763785,46.24648927,48.12902763,49.85573305,51.43662963,52.88129959,54.19889697,55.39816113,56.48742985,57.47465218,58.36740102,59.17288536,59.89796229,60.54914868,61.13263263,61.65428459,62.11966834,62.53405155,62.90241619,63.22946866,63.51964968,63.77986482,64.02124681,64.24612443,64.45667649,64.6549378,64.84280487,65.02204165,65.19428489,65.36104955,65.52373394,65.68362478,65.84190207,65.99964387,66.15783094,66.31735119,66.47900406,66.64350478,66.81148844,66.983514,67.16006816,67.34156907,67.52837002,67.72076293,67.91898175,68.12320577,68.33356283,68.55013239,68.77294851,69.00200277,69.23724705,69.47859619,69.72593064,69.97909895,70.23792017,70.50218623,70.77166413,71.04609814,71.32521189,71.62235332,72.01186156,72.41093197,72.81906332,73.23573249,73.66039698,74.09249736,74.53145956,74.97669714,75.42761342,75.88360347,76.34405616,76.80835594,77.27588467,77.7460233,78.21815351,78.69165919,79.16592799,79.64035262,80.11433222,80.58727357,81.05859228,81.52771389,81.9940749,82.45712376,82.91632177,83.37114395,83.82107982,84.26563414,84.7043276,85.13669743,85.562298,85.98070136,86.39149766,86.79429563,87.18872298,87.57442667,87.95107329,88.31834924,88.67596103,89.02363537,89.3611194,89.6881807,90.00460745,90.3102084,90.60481293,90.88827096,91.16045296,91.42124983,91.67057279,91.90835323,92.13454258,92.34911212,92.55205274,92.74337473,92.92310751,93.0942088,93.25737267,93.41259973,93.55990377,93.69931161,93.8308629,93.95460987,94.07061711,94.17896129,94.27973097,94.3730263,94.45895874,94.53765081,94.60923579,94.67537072,94.73773813,94.79638462,94.85136201,94.90272718,94.95054198,94.99487308,95.03579181,95.07337407,95.10770016,95.13885463,95.16692615,95.19200739,95.21419481,95.23358857,95.25029236,95.26441323,95.27606148,95.28535047,95.29239651,95.29731865,95.30023858,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.30128046,95.33521881,95.37337294,95.41511465,95.55435079,95.71377564,95.88296678,96.06207811,96.25125625,96.4506404,96.6603623,96.97094911,97.36193722,97.76950693,98.19375769,98.6347772,99.09264146,99.56741468,100.0591493,100.567886,101.0936539,101.6364702,102.1963406,102.7732591,103.3672081,103.9781587,104.6060704,105.2508912,105.9125583,106.5909971,107.2861225,107.997838,108.7260364,109.4706,110.2314,111.0082975,111.8011431,112.6097773,113.4340305,114.2737233,115.1286665,115.9986614,116.8835001,117.7829651,118.6968305,119.6248611,120.5668133,121.5224352,122.4914666,123.4736392,124.4686773,125.4762972,126.4962082,127.5281125,128.5717052,129.6266751,130.6927044,131.7694691,132.8566394,133.9538799,135.0608497,136.1772027,137.3025878,138.4366496,139.5790278,140.7293584,141.8872733,143.0524007,144.2243656,145.4027897,146.587292,147.7774889,148.9729945,150.1734206,151.3783777,152.5874742,153.8003175,155.0165141,156.2356696,157.457389,158.6812774,159.9069395,161.1339807,162.3620068,163.5906241,164.8194404,166.0480645,167.2761068,168.5031796,169.7288971,170.9528758,172.1747347,173.3940956,174.6105832,175.8238256,177.033454,178.2391036,179.4404132,180.6370259,181.828589,183.0147543,184.1951785,185.3695228,186.5374541,187.6986441,188.8527702,189.9995156,191.1385693,192.2696262,193.3923874,194.5065607,195.6118601,196.7080065,197.7947275,198.8717578,199.938839,200.9957205,202.0421585,203.0779171] + + CS2_37=[29.10206571,37.72371374,46.30597344,54.85235886,56.62552062,58.36924525,60.0864704,61.77995584,63.99136847,66.1840545,68.36028042,70.5221612,71.42482968,72.3169529,73.20022769,74.07622309,74.94638596,75.81204639,76.67442293,77.53462772,78.06032948,78.58578435,79.1118146,79.63915516,80.16845805,80.70029674,81.23517027,81.7735073,82.31567006,82.86195812,83.41261208,83.96781717,84.43206697,84.90108576,85.37491275,85.85354489,86.33693981,86.82501875,87.3176694,87.81474849,88.31608449,88.82148004,89.33071439,89.84354565,90.3597131,90.87893921,91.40093175,91.92538572,92.45198521,92.98040518,93.51031314,94.04137091,94.57323595,95.10556296,95.63800534,96.17021635,96.70185045,97.23256457,97.76201907,98.28987884,98.81581444,99.33950279,99.86062827,100.3788833,100.799267,101.2161926,101.6293813,102.0385652,102.4434876,102.8439039,103.2395815,103.6303009,104.0158552,104.396051,104.7707085,105.139662,105.5027592,105.8598624,106.2108481,106.5556068,106.8940438,107.2260783,107.5516441,107.8706892,108.1831756,108.4890795,108.788391,109.0811137,109.367265,109.6468755,109.9199887,110.186661,110.4469615,110.7009711,110.9487829,111.1905014,111.3580991,111.5198456,111.6758782,111.8263436,111.9713985,112.1112087,112.2459489,112.3782155,112.5104821,112.6427487,112.7750153,112.9072819,113.0395485,113.1718151,113.3040817,113.4363483,113.5686149,113.7008816,113.8331482,113.9654148,114.0976814,114.229948,114.3622146,114.4944812,114.6267478,114.7590144,114.891281,115.0235477,115.1558143,115.2880809,115.4203475,115.5526141,115.6475159,115.7424177,115.8373195,115.9322214,116.0271232,116.122025,116.2169268,116.3118286,116.4067305,116.5016323,116.5965341,116.6914359,116.7863377,116.8812396,116.9761414,117.0710432,117.165945,117.2608468,117.3557486,117.4506505,117.5455523,117.6404541,117.735356,117.8302578,117.9251596,118.0200614,118.1149632,118.209865,118.3047668,118.3996687,118.4945705,118.5894723,118.7430791,118.8966859,119.0502928,119.2038996,119.3575064,119.5111132,119.66472,119.8183269,119.9719337,120.1255405,120.3410954,120.6199926,120.9031699,121.1905016,121.4818542,121.7770873,122.0760531,122.3785971,122.6845585,122.9937702,123.3060594,123.6212477,123.9391517,124.259583,124.582349,124.9072533,125.2340954,125.5626719,125.8927766,126.2242007,126.5567339,126.890164,127.5350476,128.1804012,128.8260108,129.4716627,130.1171441,130.7622433,131.4067503,132.0504575,132.6931595,133.3346546,133.9747441,134.613234,135.2499343,135.8846604,136.5172331,137.1474793,137.775232,138.4003314,139.0226251,139.6419683,140.2582245,140.871266,141.4809741,142.0872396,142.6899633,143.2890561,143.8844398,144.4760473,145.0638225,145.6477213,146.2277117,146.8037739,147.7231425,148.6385812,149.5501089,150.4577574,151.3615723,152.2616127,153.1579516,154.0506758,154.9398859,155.8256967,156.7082371,157.5876498,158.4640915,159.3377331,160.2087588,161.0773667,161.9437682,162.808188,163.6708636,164.532045,165.3919945,166.2509863,167.1093059,167.9672494,168.8251236,169.6832447,170.5419378,171.4015367,172.2623823,173.1248225,173.9892108,174.8559057,175.4924136,176.1319554,176.7748977,177.4216077,178.0724516,178.7277933,179.3879931,180.0534062,180.724381,181.4012578,182.0843664,182.7740249,183.4705376,184.1741929,184.8852616,185.6039941,186.3306187,187.0653393,187.8083325,188.5597454,189.3196931,190.0882554,190.8654747,191.6513525,192.4458466,193.2488681,194.0602778,194.8798829,195.7074339,196.5426204,197.385068,198.2343338,198.9538561,199.6790907,200.4093662,201.1439264,201.8819257,202.6224249,203.3643859,204.1066673,204.8480193,205.5870782,206.3223613,207.0522618,207.7750424,208.4888303,209.1916107,209.8812214,210.5553457,211.2115068,211.8470607,212.4591899,213.0448962,213.6009936,214.1241015,214.6106366,215.0568061,215.4995219,215.9422376] + + CS2_38=[29.10206571,37.72371374,46.30597344,54.85235886,56.62552062,58.36924525,60.0864704,61.77995584,63.99136847,66.1840545,68.36028042,70.5221612,71.42482968,72.3169529,73.20022769,74.07622309,74.94638596,75.81204639,76.67442293,77.53462772,78.06032948,78.58578435,79.1118146,79.63915516,80.16845805,80.70029674,81.23517027,81.7735073,82.31567006,82.86195812,83.41261208,83.96781717,84.43206697,84.90108576,85.37491275,85.85354489,86.33693981,86.82501875,87.3176694,87.81474849,88.31608449,88.82148004,89.33071439,89.84354565,90.3597131,90.87893921,91.40093175,91.92538572,92.45198521,92.98040518,93.51031314,94.04137091,94.57323595,95.10556296,95.63800534,96.17021635,96.70185045,97.23256457,97.76201907,98.28987884,98.81581444,99.33950279,99.86062827,100.3788833,100.799267,101.2161926,101.6293813,102.0385652,102.4434876,102.8439039,103.2395815,103.6303009,104.0158552,104.396051,104.7707085,105.139662,105.5027592,105.8598624,106.2108481,106.5556068,106.8940438,107.2260783,107.5516441,107.8706892,108.1831756,108.4890795,108.788391,109.0811137,109.367265,109.6468755,109.9199887,110.186661,110.4469615,110.7009711,110.9487829,111.1905014,111.3580991,111.5198456,111.6758782,111.8263436,111.9713985,112.1112087,112.2459489,112.3782155,112.5104821,112.6427487,112.7750153,112.9072819,113.0395485,113.1718151,113.3040817,113.4363483,113.5686149,113.7008816,113.8331482,113.9654148,114.0976814,114.229948,114.3622146,114.4944812,114.6267478,114.7590144,114.891281,115.0235477,115.1558143,115.2880809,115.4203475,115.5526141,115.6475159,115.7424177,115.8373195,115.9322214,116.0271232,116.122025,116.2169268,116.3118286,116.4067305,116.5016323,116.5965341,116.6914359,116.7863377,116.8812396,116.9761414,117.0710432,117.165945,117.2608468,117.3557486,117.4506505,117.5455523,117.6404541,117.735356,117.8302578,117.9251596,118.0200614,118.1149632,118.209865,118.3047668,118.3996687,118.4945705,118.5894723,118.7430791,118.8966859,119.0502928,119.2038996,119.3575064,119.5111132,119.66472,119.8183269,119.9719337,120.1255405,120.3410954,120.6199926,120.9031699,121.1905016,121.4818542,121.7770873,122.0760531,122.3785971,122.6845585,122.9937702,123.3060594,123.6212477,123.9391517,124.259583,124.582349,124.9072533,125.2340954,125.5626719,125.8927766,126.2242007,126.5567339,126.890164,127.5350476,128.1804012,128.8260108,129.4716627,130.1171441,130.7622433,131.4067503,132.0504575,132.6931595,133.3346546,133.9747441,134.613234,135.2499343,135.8846604,136.5172331,137.1474793,137.775232,138.4003314,139.0226251,139.6419683,140.2582245,140.871266,141.4809741,142.0872396,142.6899633,143.2890561,143.8844398,144.4760473,145.0638225,145.6477213,146.2277117,146.8037739,147.7231425,148.6385812,149.5501089,150.4577574,151.3615723,152.2616127,153.1579516,154.0506758,154.9398859,155.8256967,156.7082371,157.5876498,158.4640915,159.3377331,160.2087588,161.0773667,161.9437682,162.808188,163.6708636,164.532045,165.3919945,166.2509863,167.1093059,167.9672494,168.8251236,169.6832447,170.5419378,171.4015367,172.2623823,173.1248225,173.9892108,174.8559057,175.4924136,176.1319554,176.7748977,177.4216077,178.0724516,178.7277933,179.3879931,180.0534062,180.724381,181.4012578,182.0843664,182.7740249,183.4705376,184.1741929,184.8852616,185.6039941,186.3306187,187.0653393,187.8083325,188.5597454,189.3196931,190.0882554,190.8654747,191.6513525,192.4458466,193.2488681,194.0602778,194.8798829,195.7074339,196.5426204,197.385068,198.2343338,198.9538561,199.6790907,200.4093662,201.1439264,201.8819257,202.6224249,203.3643859,204.1066673,204.8480193,205.5870782,206.3223613,207.0522618,207.7750424,208.4888303,209.1916107,209.8812214,210.5553457,211.2115068,211.8470607,212.4591899,213.0448962,213.6009936,214.1241015,214.6106366,215.0568061,215.4995219,215.9422376] + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(CS2_35, linewidth=1,c='b',label="c1") + ax.plot(CS2_36, linewidth=1,c='g',label="c4") + ax.plot(CS2_37, linewidth=1,c='y',label="c6") + ax.plot(CS2_38, linewidth=1,c='r',label="c6") + + # 显示图形 + font1 = { + 'weight' : 'normal', + 'size' : 14, + } + + + #设置横纵坐标的名称以及对应字体格式 + font2 = {#'family' : 'Times New Roman', + 'weight' : 'normal', + 'size' : 30, + } + + plt.xlabel('Cycle',font1) #X轴标签 + plt.ylabel("Capacity (Ah)",font1) #Y轴标签 + plt.legend() + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_IGBT_curves_comparision.eps',dpi=800,format='eps',bbox_inches = 'tight') + plt.savefig(last_last_last_last_path+r'\figure\by_code\Dataset_IGBT_curves_comparision.png',dpi=800,format='png',bbox_inches = 'tight') + plt.show() + + return CS2_35,CS2_36,CS2_37,CS2_38 + + + +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() +CS2_35,CS2_36,CS2_37,CS2_38=get_data_list() + + +# print(CS2_35) + +CS2_35=list(np.array(CS2_35)-CS2_35[0]) +CS2_36=list(np.array(CS2_36)-CS2_36[0]) +CS2_37=list(np.array(CS2_37)-CS2_37[0]) +CS2_38=list(np.array(CS2_38)-CS2_38[0]) + +# print(CS2_35) + + +# print(CS2_35[0]) +# print(CS2_36[0]) +# print(CS2_37[0]) +# print(CS2_38[0]) + +def get_health_list(CS2_35,shed): + for i in range(len(CS2_35)): + if CS2_35[i]>shed: + print("aaaaa") ######################################## 小于门槛值 + CS235=CS2_35[0:i] + return list(CS235) + else: + + if i==len(CS2_35)-1: + print("aaaaa") ######################################## 小于门槛值 + CS235=CS2_35[0:i] + return list(CS235) + +# CS235=get_health_list(CS2_35,shed) +# CS236=get_health_list(CS2_36,shed) +# CS237=get_health_list(CS2_37,shed) +# CS238=get_health_list(CS2_38,shed) + +# fig, ax = plt.subplots() +# # 在生成的坐标系下画折线图 +# ax.plot(CS235, linewidth=1) +# ax.plot(CS236, linewidth=1) +# ax.plot(CS237, linewidth=1) +# ax.plot(CS238, linewidth=1) + +# # 显示图形 +# plt.show() + +def get_input_out_2(CS236,CS237,time_windows): + + + # CS235_health=get_health_list(CS235,shed) + CS237_health=get_health_list(CS237,shed) + CS236_health=get_health_list(CS236,shed) + # CS235_health[::-1] + + # print(CS235_health) + + # CS235_health=list(reversed(CS235_health)) + print(CS236_health) + + + + CS236_health=list(reversed(CS236_health)) + CS237_health=list(reversed(CS237_health)) + + # for i in range(time_windows-1-2): + # CS235_health.append(0) + + for i in range(time_windows-1-2): + CS236_health.append(0) + + for i in range(time_windows-1-2): + CS237_health.append(0) + + # CS235_health=list(reversed(CS235_health)) + CS236_health=list(reversed(CS236_health)) + CS237_health=list(reversed(CS237_health)) + + x_train_list=[] + y_train_list=[] + # for i in range(len(CS235_health)-time_windows+1): + # x_train_list.append(np.array(CS235_health[i:i+time_windows])) + # y_train_list.append(len(CS235_health)-time_windows+1-1-i) + + for i in range(len(CS236_health)-time_windows+1): + x_train_list.append(np.array(CS236_health[i:i+time_windows])) + y_train_list.append(len(CS236_health)-time_windows+1-1-i) + x_train_array=np.array(x_train_list) + y_train_array=np.array(y_train_list) + + + x_test_list=[] + y_test_list=[] + for i in range(len(CS237_health)-time_windows+1): + x_test_list.append(np.array(CS237_health[i:i+time_windows])) + y_test_list.append(len(CS237_health)-time_windows+1-1-i) + + x_test_array=np.array(x_test_list) + y_test_array=np.array(y_test_list) + + return x_train_array , y_train_array , x_test_array , y_test_array + + + + + + + + + + + + +def get_input_out_3(CS235,CS236,CS237,time_windows): + # min_len=min(len(CS235),len(CS236),len(CS237)) + + # input_list=[] + # output_list=[] + + # true_out_list=[] + + CS235_health=get_health_list(CS235,shed) + CS237_health=get_health_list(CS237,shed) + CS236_health=get_health_list(CS236,shed) + # CS235_health[::-1] + + # print(CS235_health) + + CS235_health=list(reversed(CS235_health)) + # print(CS23_health) + + + + CS236_health=list(reversed(CS236_health)) + CS237_health=list(reversed(CS237_health)) + + for i in range(time_windows-1-2): + CS235_health.append(0) + + for i in range(time_windows-1-2): + CS236_health.append(0) + + for i in range(time_windows-1-2): + CS237_health.append(0) + + CS235_health=list(reversed(CS235_health)) + CS236_health=list(reversed(CS236_health)) + CS237_health=list(reversed(CS237_health)) + + x_train_list=[] + y_train_list=[] + for i in range(len(CS235_health)-time_windows+1): + x_train_list.append(np.array(CS235_health[i:i+time_windows])) + y_train_list.append(len(CS235_health)-time_windows+1-1-i) + + for i in range(len(CS236_health)-time_windows+1): + x_train_list.append(np.array(CS236_health[i:i+time_windows])) + y_train_list.append(len(CS236_health)-time_windows+1-1-i) + x_train_array=np.array(x_train_list) + y_train_array=np.array(y_train_list) + + + x_test_list=[] + y_test_list=[] + for i in range(len(CS237_health)-time_windows+1): + x_test_list.append(np.array(CS237_health[i:i+time_windows])) + y_test_list.append(len(CS237_health)-time_windows+1-1-i) + + x_test_array=np.array(x_test_list) + y_test_array=np.array(y_test_list) + + return x_train_array , y_train_array , x_test_array , y_test_array + + + + + +# x_train_array , y_train_array , x_test_array , y_test_array=get_input_out_3(CS2_35,CS2_36,CS2_37,20) + +# x_train_array , y_train_array , x_test_array , y_test_array=get_input_out_2(CS2_36,CS2_37,20) + + + + + + + + +#import tensorflow as tf +import os +import logging +import numpy as np +#from numpy import trans +import matplotlib.pyplot as plt +#import tensorflow as tf +# import CMAPSSDataset +import pandas as pd +import datetime +import keras +from keras.layers import Lambda +import math +import keras.backend as K +import tensorflow as tf +from tfdeterminism import patch +from sklearn.model_selection import train_test_split +from keras.utils.vis_utils import plot_model +patch() +# tf.random.set_seed(0) +#import keras +#flags = tf.flags +#flags.DEFINE_string("weights", None, 'weights of the network')################# the file path of weights +#flags.DEFINE_integer("epochs", 100, 'train epochs') +#flags.DEFINE_integer("batch_size", 32, 'batch size for train/test') +#flags.DEFINE_integer("sequence_length", 32, 'sequence length') +#flags.DEFINE_boolean('debug', False, 'debugging mode or not') +#FLAGS = flags.FLAGS + +def root_mean_squared_error(y_true, y_pred): + return K.sqrt(K.mean(K.square(y_pred - y_true),axis=0))################## axis=0 + +def rmse(predictions, targets): + return np.sqrt(((predictions - targets) ** 2).mean()) + + + + + +segment=3 + + + +run_times=10 + + + +nb_epochs=2000 #200 +batch_size=64 ## 64 #####300 +# sequence_length=31 ############# min31 max303 + +patience=50 +patience_reduce_lr=20 + + + + + +seed=2 + + + +num_filter1=64 +num_filter2=128 +num_filter3=64 + + + +kernel1_size=8 +kernel2_size=5 +kernel3_size=3 + + + +sequence_length=20 + + + + + + + + +X_train , Y_train , X_test , Y_test =get_input_out_3(CS2_35,CS2_36,CS2_37,sequence_length) + +# rul_pred_array +# [713.244, 713.1562, 712.77234, 712.6178, 712.6362, 712.1615, 711.78345, 711.2615, 708.99744, 708.87, 711.11, 712.4278, 713.49414, 714.25867, 713.402, 711.72095, 711.26874, 710.88086, 710.22986, 709.77014, 709.3306, 710.3753, 711.87366, 711.3405, 709.3842, 706.19525, 702.10974, 699.5227, 699.2441, 698.87585, 701.22906, 703.2003, 700.235, 699.10095, 696.52496, 693.44666, 693.0563, 696.2302, 698.7272, 695.3815, 694.4967, 693.5123, 693.38306, 693.2394, 694.91754, 697.03656, 693.40564, 691.52985, 690.39124, 691.87085, 691.4027, 697.944, 698.5906, 695.2054, 700.6422, 705.2433, 703.1223, 700.4419, 699.7397, 699.2757, 701.4927, 702.37616, 702.47864, 705.78375, 701.02783, 696.3351, 691.7626, 693.1491, 686.65295, 681.7866, 689.0198, 688.1178, 688.4046, 687.5969, 688.75806, 689.65076, 688.8744, 688.23584, 686.7946, 687.5255, 686.79346, 685.3927, 684.9672, 683.8795, 682.6698, 682.51025, 683.8211, 682.92114, 680.70654, 679.4169, 678.1807, 674.47833, 670.88367, 668.7057, 666.5606, 669.7509, 672.69556, 673.4862, 674.9121, 674.3078, 672.216, 671.7014, 670.01697, 668.50116, 666.4166, 669.5475, 673.41077, 674.2728, 671.56934, 666.7858, 657.87476, 652.3662, 652.8141, 659.29144, 664.42487, 661.59357, 659.1002, 657.7722, 653.1403, 647.9372, 651.46344, 654.8484, 656.52966, 660.3795, 665.4159, 665.53253, 663.9164, 661.2416, 662.7247, 663.3247, 664.1227, 667.2366, 669.012, 668.1583, 664.56287, 663.0799, 659.5332, 651.3357, 646.80853, 648.03955, 644.49786, 646.05493, 649.70776, 651.1151, 646.3118, 644.782, 644.1628, 646.97546, 653.35034, 655.55914, 651.2461, 647.23236, 647.4703, 650.45416, 653.9027, 652.37897, 647.29944, 641.7139, 635.1615, 633.4523, 634.6832, 641.3993, 641.96686, 638.1969, 639.8759, 637.06177, 635.131, 631.55237, 631.87006, 635.26575, 638.7335, 642.37933, 646.0248, 648.5171, 647.1953, 645.5355, 645.90814, 645.80865, 646.49054, 647.4532, 649.38434, 647.8402, 644.8619, 643.1564, 643.4628, 637.869, 633.56604, 632.9404, 631.04736, 626.7531, 627.45593, 629.57587, 628.3112, 623.5763, 617.7104, 615.6481, 619.1083, 627.56067, 632.7553, 630.5792, 626.2737, 624.652, 626.09863, 625.9995, 625.6986, 627.5331, 622.86456, 618.31537, 615.52716, 615.3958, 616.89294, 616.6007, 618.57007, 621.04364, 621.85986, 619.1908, 619.1992, 619.8617, 625.7473, 630.04663, 629.1188, 629.27875, 630.44775, 631.568, 629.7825, 627.8963, 627.9581, 626.93616, 627.9811, 630.30066, 633.31964, 631.2836, 626.3009, 627.468, 630.504, 629.2702, 625.2847, 621.13684, 617.03406, 611.2758, 610.44275, 611.9093, 611.60657, 607.73096, 601.79846, 605.56006, 612.6711, 622.30334, 629.7209, 629.4262, 623.1507, 622.5094, 623.0492, 617.2604, 605.971, 601.8469, 599.1995, 599.5541, 597.9122, 595.98914, 589.1527, 584.6663, 583.79626, 585.5099, 594.225, 601.0638, 608.88794, 605.9352, 599.1792, 595.4628, 595.3343, 594.90283, 593.2749, 597.38654, 593.98474, 586.7595, 577.71985, 575.28845, 577.2362, 579.4049, 580.1428, 583.24426, 587.7101, 589.4106, 588.6268, 587.16614, 586.3199, 586.5416, 586.0021, 585.6371, 586.47034, 584.5841, 581.5365, 578.49664, 579.96155, 578.78345, 573.5273, 572.7939, 573.76306, 569.73926, 566.2865, 565.7433, 567.62, 561.5143, 555.05096, 549.80835, 548.40906, 547.1733, 547.8942, 549.353, 552.2807, 555.75916, 554.5836, 553.7981, 553.36707, 554.37335, 550.27716, 546.5861, 548.1832, 549.82166, 547.61584, 541.95703, 538.0464, 541.4823, 544.5839, 547.6454, 549.9669, 552.8439, 553.7388, 553.7318, 553.8903, 553.8476, 552.896, 549.4304, 544.7288, 540.0086, 540.3739, 540.5376, 535.44745, 533.04846, 532.8993, 529.39636, 521.69885, 519.7277, 519.0194, 515.3288, 508.64273, 501.18637, 497.21533, 496.0961, 495.97577, 495.23126, 496.37384, 491.4583, 484.74423, 478.80316, 474.34277, 469.4146, 469.03345, 468.89053, 465.17154, 464.96143, 461.1883, 456.01862, 454.92343, 455.3499, 452.15942, 446.37433, 443.41284, 441.24835, 436.5005, 430.64005, 426.2313, 427.85553, 428.28995, 432.5515, 432.6935, 431.76157, 434.09854, 434.56488, 434.49228, 435.09393, 436.50278, 436.3396, 431.79022, 428.1424, 427.97223, 430.00546, 432.72232, 429.26474, 430.43076, 429.89224, 426.63614, 423.2202, 423.28696, 422.1862, 416.34985, 411.7933, 407.31915, 403.97333, 399.66638, 399.04205, 397.17175, 393.88266, 388.6202, 384.48453, 381.4451, 375.44244, 373.07654, 375.6656, 375.3813, 372.5932, 372.71783, 371.48724, 366.39764, 363.39453, 360.81076, 357.25214, 353.15027, 350.0936, 353.66705, 350.39478, 346.71588, 345.26254, 344.14606, 342.3794, 343.16806, 340.99188, 338.32416, 340.9997, 341.55597, 342.8888, 333.07767, 324.71643, 320.0458, 316.3312, 314.40756, 316.67877, 314.3625, 308.9753, 303.88425, 299.55035, 299.30145, 299.43622, 298.1392, 296.75464, 291.98093, 284.17374, 283.42746, 287.1516, 284.4586, 278.20605, 278.40546, 274.96393, 270.15665, 264.2525, 267.82062, 269.34906, 266.54993, 262.69067, 261.7164, 256.78983, 253.13374, 256.29172, 260.89005, 259.48962, 257.92438, 260.8764, 261.3296, 260.27756, 260.27078, 264.4813, 267.294, 265.554, 264.16806, 265.41373, 265.86288, 262.76962, 259.8485, 263.51636, 262.80365, 261.8983, 255.401, 253.71756, 253.90579, 252.634, 248.46863, 246.09912, 241.2253, 237.07373, 233.98064, 234.85242, 234.5695, 235.1449, 232.24678, 228.7192, 222.28073, 216.94296, 219.00131, 222.97478, 219.77766, 215.06314, 214.49088, 212.39633, 205.1956, 198.69612, 201.54987, 205.50398, 198.35611, 195.1422, 192.6241, 190.18031, 187.43675, 186.1347, 189.1068, 187.79317, 183.29237, 184.31013, 184.47766, 182.97884, 181.37143, 181.35753, 185.40533, 182.61295, 175.84111, 175.50711, 178.02734, 180.84474, 187.77629, 189.38794, 185.81625, 183.46696, 180.11668, 179.86276, 182.08359, 179.6784, 174.4248, 172.5172, 170.37212, 170.69522, 167.39456, 167.28006, 169.23067, 172.59262, 165.2148, 161.39572, 161.88583, 160.81479, 160.64876, 159.30542, 155.43123, 149.88556, 146.71269, 145.40408, 147.36478, 148.45169, 147.17987, 144.73495, 140.19785, 138.08614, 137.14355, 138.66843, 140.37465, 141.23547, 139.433, 138.74422, 138.839, 138.0947, 128.92258, 128.39798, 126.71358, 128.17403, 127.819595, 129.33855, 129.65257, 129.29678, 121.39711, 120.12527, 117.69694, 119.05394, 117.72056, 119.64604, 123.27684, 122.55349, 119.29464, 122.29118, 123.68431, 124.139786, 124.98164, 126.66221, 129.3624, 127.10695, 122.94556, 120.55647, 118.81523, 117.802895, 119.91113, 118.65028, 114.92422, 113.490135, 110.923645, 107.33518, 105.965164, 103.69718, 104.137695, 103.06416, 103.24333, 102.462845, 102.53288, 100.935425, 98.75389, 98.23696, 97.19185, 95.53534, 96.70274, 95.66011, 90.46946, 83.95983, 83.20836, 82.16189, 82.77049, 82.20778, 83.26946, 85.21086, 84.03151, 79.75421, 78.6595, 79.69268, 80.109375, 80.9441, 81.87271, 80.89349, 80.56523, 80.79472, 79.93695, 79.7756, 81.50333, 84.42182, 85.74151, 87.307785, 88.265854, 89.66879, 88.91675, 83.158646, 77.42551, 73.047905, 73.4345, 72.8579, 70.774414, 69.25677, 67.67607, 66.21152, 66.07107, 66.04902, 67.13377, 68.20207, 69.87503, 70.18053, 71.12348, 69.15323, 66.54096, 63.878376, 61.638508, 61.73644, 61.025383, 61.52482, 57.93728, 55.16337, 54.173695, 54.281433, 55.20214, 55.941143, 56.94815, 56.06418, 55.936054, 55.102997, 53.799873, 54.237335, 55.870228, 57.047535, 57.02363, 57.892677, 58.243458, 57.36081, 57.534332, 57.350136, 58.411877, 59.96099, 60.542988, 61.49874, 61.587837, 62.12456, 61.822002, 61.691826, 59.3513, 58.01903, 60.52827, 59.774464, 59.4804, 58.18931, 56.108692, 54.756462, 53.438488, 53.59255, 53.52561, 55.051807, 54.463898, 54.91088, 54.076794, 51.721935, 50.54023, 50.204033, 50.869514, 50.632153, 52.1, 51.59037, 50.37258, 47.418568, 43.07737, 40.435974, 44.509205, 43.924797, 36.716595, 29.19551, 28.993393, 28.50917, 28.568375, 23.621105, 19.200375, 17.296505, 15.499324, 15.344284] +# true_out_array +# [731.0, 730.0, 729.0, 728.0, 727.0, 726.0, 725.0, 724.0, 723.0, 722.0, 721.0, 720.0, 719.0, 718.0, 717.0, 716.0, 715.0, 714.0, 713.0, 712.0, 711.0, 710.0, 709.0, 708.0, 707.0, 706.0, 705.0, 704.0, 703.0, 702.0, 701.0, 700.0, 699.0, 698.0, 697.0, 696.0, 695.0, 694.0, 693.0, 692.0, 691.0, 690.0, 689.0, 688.0, 687.0, 686.0, 685.0, 684.0, 683.0, 682.0, 681.0, 680.0, 679.0, 678.0, 677.0, 676.0, 675.0, 674.0, 673.0, 672.0, 671.0, 670.0, 669.0, 668.0, 667.0, 666.0, 665.0, 664.0, 663.0, 662.0, 661.0, 660.0, 659.0, 658.0, 657.0, 656.0, 655.0, 654.0, 653.0, 652.0, 651.0, 650.0, 649.0, 648.0, 647.0, 646.0, 645.0, 644.0, 643.0, 642.0, 641.0, 640.0, 639.0, 638.0, 637.0, 636.0, 635.0, 634.0, 633.0, 632.0, 631.0, 630.0, 629.0, 628.0, 627.0, 626.0, 625.0, 624.0, 623.0, 622.0, 621.0, 620.0, 619.0, 618.0, 617.0, 616.0, 615.0, 614.0, 613.0, 612.0, 611.0, 610.0, 609.0, 608.0, 607.0, 606.0, 605.0, 604.0, 603.0, 602.0, 601.0, 600.0, 599.0, 598.0, 597.0, 596.0, 595.0, 594.0, 593.0, 592.0, 591.0, 590.0, 589.0, 588.0, 587.0, 586.0, 585.0, 584.0, 583.0, 582.0, 581.0, 580.0, 579.0, 578.0, 577.0, 576.0, 575.0, 574.0, 573.0, 572.0, 571.0, 570.0, 569.0, 568.0, 567.0, 566.0, 565.0, 564.0, 563.0, 562.0, 561.0, 560.0, 559.0, 558.0, 557.0, 556.0, 555.0, 554.0, 553.0, 552.0, 551.0, 550.0, 549.0, 548.0, 547.0, 546.0, 545.0, 544.0, 543.0, 542.0, 541.0, 540.0, 539.0, 538.0, 537.0, 536.0, 535.0, 534.0, 533.0, 532.0, 531.0, 530.0, 529.0, 528.0, 527.0, 526.0, 525.0, 524.0, 523.0, 522.0, 521.0, 520.0, 519.0, 518.0, 517.0, 516.0, 515.0, 514.0, 513.0, 512.0, 511.0, 510.0, 509.0, 508.0, 507.0, 506.0, 505.0, 504.0, 503.0, 502.0, 501.0, 500.0, 499.0, 498.0, 497.0, 496.0, 495.0, 494.0, 493.0, 492.0, 491.0, 490.0, 489.0, 488.0, 487.0, 486.0, 485.0, 484.0, 483.0, 482.0, 481.0, 480.0, 479.0, 478.0, 477.0, 476.0, 475.0, 474.0, 473.0, 472.0, 471.0, 470.0, 469.0, 468.0, 467.0, 466.0, 465.0, 464.0, 463.0, 462.0, 461.0, 460.0, 459.0, 458.0, 457.0, 456.0, 455.0, 454.0, 453.0, 452.0, 451.0, 450.0, 449.0, 448.0, 447.0, 446.0, 445.0, 444.0, 443.0, 442.0, 441.0, 440.0, 439.0, 438.0, 437.0, 436.0, 435.0, 434.0, 433.0, 432.0, 431.0, 430.0, 429.0, 428.0, 427.0, 426.0, 425.0, 424.0, 423.0, 422.0, 421.0, 420.0, 419.0, 418.0, 417.0, 416.0, 415.0, 414.0, 413.0, 412.0, 411.0, 410.0, 409.0, 408.0, 407.0, 406.0, 405.0, 404.0, 403.0, 402.0, 401.0, 400.0, 399.0, 398.0, 397.0, 396.0, 395.0, 394.0, 393.0, 392.0, 391.0, 390.0, 389.0, 388.0, 387.0, 386.0, 385.0, 384.0, 383.0, 382.0, 381.0, 380.0, 379.0, 378.0, 377.0, 376.0, 375.0, 374.0, 373.0, 372.0, 371.0, 370.0, 369.0, 368.0, 367.0, 366.0, 365.0, 364.0, 363.0, 362.0, 361.0, 360.0, 359.0, 358.0, 357.0, 356.0, 355.0, 354.0, 353.0, 352.0, 351.0, 350.0, 349.0, 348.0, 347.0, 346.0, 345.0, 344.0, 343.0, 342.0, 341.0, 340.0, 339.0, 338.0, 337.0, 336.0, 335.0, 334.0, 333.0, 332.0, 331.0, 330.0, 329.0, 328.0, 327.0, 326.0, 325.0, 324.0, 323.0, 322.0, 321.0, 320.0, 319.0, 318.0, 317.0, 316.0, 315.0, 314.0, 313.0, 312.0, 311.0, 310.0, 309.0, 308.0, 307.0, 306.0, 305.0, 304.0, 303.0, 302.0, 301.0, 300.0, 299.0, 298.0, 297.0, 296.0, 295.0, 294.0, 293.0, 292.0, 291.0, 290.0, 289.0, 288.0, 287.0, 286.0, 285.0, 284.0, 283.0, 282.0, 281.0, 280.0, 279.0, 278.0, 277.0, 276.0, 275.0, 274.0, 273.0, 272.0, 271.0, 270.0, 269.0, 268.0, 267.0, 266.0, 265.0, 264.0, 263.0, 262.0, 261.0, 260.0, 259.0, 258.0, 257.0, 256.0, 255.0, 254.0, 253.0, 252.0, 251.0, 250.0, 249.0, 248.0, 247.0, 246.0, 245.0, 244.0, 243.0, 242.0, 241.0, 240.0, 239.0, 238.0, 237.0, 236.0, 235.0, 234.0, 233.0, 232.0, 231.0, 230.0, 229.0, 228.0, 227.0, 226.0, 225.0, 224.0, 223.0, 222.0, 221.0, 220.0, 219.0, 218.0, 217.0, 216.0, 215.0, 214.0, 213.0, 212.0, 211.0, 210.0, 209.0, 208.0, 207.0, 206.0, 205.0, 204.0, 203.0, 202.0, 201.0, 200.0, 199.0, 198.0, 197.0, 196.0, 195.0, 194.0, 193.0, 192.0, 191.0, 190.0, 189.0, 188.0, 187.0, 186.0, 185.0, 184.0, 183.0, 182.0, 181.0, 180.0, 179.0, 178.0, 177.0, 176.0, 175.0, 174.0, 173.0, 172.0, 171.0, 170.0, 169.0, 168.0, 167.0, 166.0, 165.0, 164.0, 163.0, 162.0, 161.0, 160.0, 159.0, 158.0, 157.0, 156.0, 155.0, 154.0, 153.0, 152.0, 151.0, 150.0, 149.0, 148.0, 147.0, 146.0, 145.0, 144.0, 143.0, 142.0, 141.0, 140.0, 139.0, 138.0, 137.0, 136.0, 135.0, 134.0, 133.0, 132.0, 131.0, 130.0, 129.0, 128.0, 127.0, 126.0, 125.0, 124.0, 123.0, 122.0, 121.0, 120.0, 119.0, 118.0, 117.0, 116.0, 115.0, 114.0, 113.0, 112.0, 111.0, 110.0, 109.0, 108.0, 107.0, 106.0, 105.0, 104.0, 103.0, 102.0, 101.0, 100.0, 99.0, 98.0, 97.0, 96.0, 95.0, 94.0, 93.0, 92.0, 91.0, 90.0, 89.0, 88.0, 87.0, 86.0, 85.0, 84.0, 83.0, 82.0, 81.0, 80.0, 79.0, 78.0, 77.0, 76.0, 75.0, 74.0, 73.0, 72.0, 71.0, 70.0, 69.0, 68.0, 67.0, 66.0, 65.0, 64.0, 63.0, 62.0, 61.0, 60.0, 59.0, 58.0, 57.0, 56.0, 55.0, 54.0, 53.0, 52.0, 51.0, 50.0, 49.0, 48.0, 47.0, 46.0, 45.0, 44.0, 43.0, 42.0, 41.0, 40.0, 39.0, 38.0, 37.0, 36.0, 35.0, 34.0, 33.0, 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] +# error_pred_array +# [128.44404296875, 129.1562255859375, 129.57232666015625, 130.21776123046874, 131.03623657226564, 131.361474609375, 131.78346557617186, 132.06145629882812, 130.59747314453125, 131.2699951171875, 134.30995483398436, 136.42778930664062, 138.29417114257814, 139.85870361328125, 139.80201416015626, 138.92095947265625, 139.26876831054688, 139.68087158203124, 139.82987060546876, 140.17011108398438, 140.5306823730469, 142.37528076171876, 144.67363891601562, 144.94056396484376, 143.78418579101563, 141.395263671875, 138.10977783203126, 136.32273559570314, 136.84407958984374, 137.27587280273437, 140.42905883789064, 143.20032348632813, 141.0349609375, 140.7008850097656, 138.9249267578125, 136.6466552734375, 137.05631103515626, 141.0302001953125, 144.32713012695314, 141.7814147949219, 141.69661865234374, 141.51235961914062, 142.18303833007812, 142.83936157226563, 145.3175476074219, 148.23655395507814, 145.4056823730469, 144.32981567382814, 143.99124145507812, 146.2708740234375, 146.60265502929687, 153.9439453125, 155.39049682617187, 152.805322265625, 159.04217529296875, 164.44320068359374, 163.122314453125, 161.24185791015626, 161.33970336914064, 161.6756591796875, 164.69271240234374, 166.376171875, 167.27867431640624, 171.38377685546874, 167.42784423828124, 163.53504638671876, 159.76257934570313, 161.94910278320313, 156.25293579101563, 152.18658447265625, 160.21983032226564, 160.11781005859376, 161.20457763671874, 161.1969421386719, 163.158056640625, 164.8507507324219, 164.8743896484375, 165.03582763671875, 164.39459228515625, 165.92542114257813, 165.99351196289064, 165.3927001953125, 165.76724243164062, 165.4794494628906, 165.06981201171874, 165.7102478027344, 167.82107543945312, 167.7211181640625, 166.30652465820313, 165.81692504882812, 165.3806640625, 162.47828979492186, 159.68365478515625, 158.30562744140624, 156.96064453125, 160.95086059570312, 164.69556884765626, 166.28624267578124, 168.51207275390624, 168.70781860351562, 167.41607055664062, 167.7013671875, 166.81691284179686, 166.10112915039062, 164.81658935546875, 168.7474365234375, 173.4107421875, 175.07284545898438, 173.16929931640624, 169.1858642578125, 161.07476806640625, 156.36621704101563, 157.614111328125, 164.8914306640625, 170.82486572265626, 168.79354248046874, 167.10023803710936, 166.57221069335938, 162.74031982421874, 158.33716430664063, 162.66343383789064, 166.84840087890626, 169.3296875, 173.97955322265625, 179.81593627929686, 180.73256225585936, 179.9164306640625, 178.04166259765626, 180.3246276855469, 181.72474365234376, 183.3226806640625, 187.23653564453124, 189.81199340820314, 189.75829467773437, 186.96285400390624, 186.27989501953124, 183.53319091796874, 176.135693359375, 172.40855102539064, 174.4395263671875, 171.69788208007813, 174.05496215820312, 178.50775756835938, 180.7151123046875, 176.71175537109374, 175.98196411132812, 176.1627990722656, 179.77540283203126, 186.95033569335936, 189.95911865234376, 186.44608154296876, 183.23233032226562, 184.2703125, 188.05416870117188, 192.3027587890625, 191.57894287109374, 187.299462890625, 182.51393432617186, 176.76150512695312, 175.85219116210936, 177.8832580566406, 185.39928588867187, 186.7668212890625, 183.79692993164062, 186.27594604492188, 184.26180419921874, 183.13094482421874, 180.35236206054688, 181.47009887695313, 185.66575927734374, 189.93357543945314, 194.37932739257812, 198.82473754882812, 202.11707763671876, 201.59533081054687, 200.73551025390626, 201.90814819335938, 202.6086669921875, 204.0905334472656, 205.853125, 208.584326171875, 207.840185546875, 205.6618408203125, 204.75636596679686, 205.86284790039062, 201.06906127929688, 197.566015625, 197.74049072265626, 196.64743041992188, 193.15314331054688, 194.65590209960936, 197.5759033203125, 197.11129150390624, 193.17633666992188, 188.1103942871094, 186.8481201171875, 191.10829467773436, 200.36063232421876, 206.35532836914064, 204.979248046875, 201.4736572265625, 200.651904296875, 202.89857788085936, 203.5995361328125, 204.0985595703125, 206.7330749511719, 202.86459350585938, 199.1153991699219, 197.12714233398438, 197.79583740234375, 200.09288330078124, 200.60069580078124, 203.37008056640624, 206.64364013671874, 208.25989990234376, 206.3908203125, 207.1991760253906, 208.6616638183594, 215.34730224609376, 220.44661865234374, 220.31876220703126, 221.2787658691406, 223.2477783203125, 225.16803588867188, 224.18244018554688, 223.0962707519531, 223.95819091796875, 223.7361572265625, 225.5809814453125, 228.70062866210938, 232.5196044921875, 231.28363037109375, 227.1009094238281, 229.06804809570312, 232.90401611328124, 232.47023315429686, 229.2846923828125, 225.93682861328125, 222.6341064453125, 217.67577514648437, 217.64271240234376, 219.90932006835936, 220.40651245117186, 217.33093872070313, 212.1984130859375, 216.7600891113281, 224.6710693359375, 235.10327758789063, 243.3209228515625, 243.8262145996094, 238.3506652832031, 238.50936889648438, 239.84925537109376, 234.86040649414062, 224.3709716796875, 221.04690551757812, 219.19954833984374, 220.35408935546874, 219.5121826171875, 218.38910522460938, 212.35267944335936, 208.6663391113281, 208.59633178710936, 211.1099060058594, 220.62493896484375, 228.26380004882813, 236.88788452148438, 234.73519287109374, 228.77924194335938, 225.8628173828125, 226.5342590332031, 226.90288696289062, 226.07484130859376, 230.986474609375, 228.3847412109375, 221.959521484375, 213.71985473632813, 212.0884582519531, 214.83616333007814, 217.8049072265625, 219.34277954101563, 223.2443115234375, 228.51013793945313, 231.01055908203125, 231.02674560546876, 230.36621704101563, 230.319921875, 231.341650390625, 231.60202026367188, 232.03707885742188, 233.6703125, 232.58411865234376, 230.33648071289062, 228.09664916992188, 230.361572265625, 229.98341674804686, 225.527294921875, 225.59389038085936, 227.36303100585937, 224.13927001953124, 221.486474609375, 221.7433349609375, 224.4200012207031, 219.11431274414062, 213.45095825195312, 209.00838623046874, 208.40909423828126, 207.97328491210936, 209.49424438476564, 211.7530029296875, 215.48071899414063, 219.75919189453126, 219.38366088867187, 219.39805908203124, 219.7670166015625, 221.57329711914062, 218.27713928222656, 215.38619995117188, 217.78320922851563, 220.22161865234375, 218.81575927734374, 213.95699462890624, 210.84642333984374, 215.08223876953124, 218.98389282226563, 222.84539184570312, 225.966943359375, 229.64389038085938, 231.33877563476562, 232.13187255859376, 233.09029541015624, 233.84762573242188, 233.69597778320312, 231.03038024902344, 227.12875671386718, 223.20855407714845, 224.3739013671875, 225.33755493164062, 221.0474884033203, 219.4484619140625, 220.09935913085937, 217.39642333984375, 210.4988006591797, 209.3277130126953, 209.41944580078126, 206.5288055419922, 200.64272766113282, 193.9864044189453, 190.81531982421876, 190.4960479736328, 191.1758270263672, 191.2312774658203, 193.17384643554686, 189.05829467773438, 183.14420166015626, 178.00317993164063, 174.34280395507812, 170.2145751953125, 170.63343505859376, 171.29056396484376, 168.37156982421874, 168.96141967773437, 165.9882781982422, 161.61859741210938, 161.32342529296875, 162.5499053955078, 160.15941467285157, 155.1743133544922, 153.01282348632813, 151.64830627441407, 147.70049133300782, 142.64002075195313, 139.03127746582032, 141.45548095703126, 142.68993530273437, 147.75152282714845, 148.69349365234376, 148.5615661621094, 151.69853820800782, 152.9649200439453, 153.81736450195314, 157.3365936279297, 159.5700653076172, 160.51480407714843, 157.65391540527344, 156.36669921875, 156.91981506347656, 159.59076538085938, 161.93418884277344, 156.6475830078125, 157.63075256347656, 157.8922332763672, 155.43609619140625, 152.82025756835938, 153.6869323730469, 153.38614807128906, 148.3498504638672, 144.593310546875, 140.919140625, 138.3848114013672, 138.43084411621095, 139.2867004394531, 138.78878784179688, 135.881689453125, 130.7374481201172, 125.21468811035156, 123.36256103515625, 120.77804565429688, 121.08883972167969, 123.76382446289062, 124.33162841796874, 122.85722351074219, 122.69735107421874, 120.98337097167969, 118.21698303222657, 117.51797790527344, 115.70404052734375, 113.69694213867187, 111.7427490234375, 110.54600524902344, 113.37464904785156, 110.89859008789062, 108.78515014648437, 108.27554626464844, 107.58105163574218, 108.38932495117187, 110.79601135253907, 109.48285522460938, 107.82490234375, 107.927880859375, 108.97590026855468, 111.93962097167969, 104.71879577636719, 98.88610229492187, 95.48537902832031, 93.4391098022461, 92.43889923095703, 94.54204406738282, 94.04161376953125, 89.48624877929687, 87.54637451171875, 85.1763687133789, 85.46596069335938, 83.41571197509765, 82.24242553710937, 82.65549774169922, 81.96833190917968, 77.42306518554688, 73.37626647949219, 74.61889953613282, 74.33442993164063, 70.08006591796875, 70.17378845214844, 68.523876953125, 67.44596099853516, 64.40172271728515, 62.305781555175784, 62.582759094238284, 62.288308715820314, 59.56385040283203, 58.42617340087891, 56.59038543701172, 57.13045654296875, 58.46919403076172, 62.009735107421875, 62.288961791992186, 62.60346984863281, 63.756675720214844, 64.31104278564453, 63.68323669433594, 65.1746322631836, 68.74009704589844, 72.00096130371094, 73.0018096923828, 74.72274322509766, 76.55504913330078, 76.93199005126954, 74.1617431640625, 71.23601684570312, 73.07925109863281, 74.16602783203125, 74.73312835693359, 67.87274932861328, 64.4855712890625, 64.35745239257812, 64.40265655517578, 62.546145629882815, 61.62525329589844, 58.22956237792969, 54.56965942382813, 53.017523193359374, 52.260223388671875, 51.804151916503905, 52.96812744140625, 50.410589599609374, 48.50082550048828, 46.18961029052734, 43.16055755615234, 42.50442962646484, 43.547607421875, 42.01837005615234, 40.051091003417966, 40.26797637939453, 39.73948364257812, 35.7941177368164, 33.56692810058594, 33.799974060058595, 34.135353088378906, 31.901150512695313, 35.163623046875, 36.728091430664065, 35.85277252197265, 34.73910064697266, 35.26514892578125, 33.18161163330078, 35.66581268310547, 38.808161926269534, 37.1342529296875, 38.10228424072265, 36.09913940429688, 33.47134094238281, 31.581875610351563, 31.80333709716797, 33.94527893066406, 37.12687225341797, 39.096003723144534, 40.56741943359375, 38.86300354003906, 38.79838409423828, 37.158447265625, 35.35722198486328, 34.99322509765625, 30.52393798828125, 29.56664581298828, 30.214495849609374, 31.07225341796875, 35.158688354492185, 36.791377258300784, 37.01826171875, 35.98007659912109, 33.92915802001953, 30.763630676269532, 28.889382934570314, 33.1811767578125, 32.430564880371094, 33.08864288330078, 30.35515594482422, 30.292254638671874, 29.416169738769533, 29.665750122070314, 28.238555908203125, 30.783740234375, 33.424522399902344, 35.67454223632812, 32.70137939453125, 31.500950622558594, 31.14190673828125, 32.862875366210936, 32.80213928222656, 33.91386108398437, 35.51348876953125, 35.19645538330078, 34.090284729003905, 31.9422119140625, 31.731845092773437, 30.219270324707033, 29.38343505859375, 31.694297790527344, 35.45694198608398, 35.507929992675784, 36.740089416503906, 34.987589263916014, 33.60873794555664, 31.36730041503906, 29.463785552978514, 31.421296691894533, 34.578975677490234, 35.89346923828125, 37.41142349243164, 34.549791717529295, 34.44340438842774, 32.61220245361328, 30.436394500732423, 29.689669036865233, 30.471735382080077, 28.523981475830077, 29.39884796142578, 28.60289764404297, 26.280330657958984, 26.365684509277344, 25.228802490234376, 24.91222686767578, 25.318479919433592, 26.076097106933595, 27.41505584716797, 28.35756607055664, 27.798690795898438, 28.33661346435547, 28.374998474121092, 27.666127014160157, 28.767979431152344, 31.29453048706055, 30.258948516845702, 30.296824645996093, 29.947371673583984, 30.238136291503906, 30.971700286865236, 29.090316009521484, 28.796878051757812, 30.330371856689453, 31.1436408996582, 30.836636352539063, 29.630431365966796, 27.953913116455077, 26.47283935546875, 26.084770965576173, 28.61912307739258, 31.80632629394531, 32.24363899230957, 32.92632713317871, 32.293766784667966, 29.404439544677736, 28.091866302490235, 26.69931106567383, 27.80881271362305, 28.237080383300782, 29.41628189086914, 30.58887481689453, 30.57209358215332, 27.072730255126952, 24.282626342773437, 24.19184799194336, 25.151026916503906, 25.748144912719727, 26.460292053222656, 27.08810501098633, 26.49458236694336, 26.118693542480468, 26.133878326416017, 23.82370834350586, 23.8682861328125, 24.35929946899414, 24.204568481445314, 22.88933410644531, 23.439949417114256, 24.84860610961914, 23.697040557861328, 21.685837173461913, 20.62164649963379, 19.64074287414551, 21.276799392700195, 22.3033390045166, 20.912229156494142, 19.005928421020506, 18.23721389770508, 19.668947601318358, 20.3134407043457, 18.602231979370117, 18.784926223754884, 17.733196258544922, 19.60085563659668, 17.897478103637695, 15.909258270263672, 15.024677658081055, 16.250395202636717, 16.844846725463867, 17.259196853637697, 17.483677291870116, 17.413933944702148, 17.06965866088867, 15.612966537475586, 13.30797233581543, 13.638027954101563, 15.00291748046875, 15.96730842590332, 15.564126968383789, 15.092281723022461, 15.439710998535157, 17.067489624023438, 17.219091796875, 17.09698028564453, 18.12844467163086, 19.08882865905762, 18.960807418823244, 20.043313598632814, 20.550130462646486, 22.56386604309082, 24.76099052429199, 26.142984771728514, 27.89873924255371, 28.787831115722657, 30.124557876586913, 30.622003173828126, 31.29182662963867, 29.751293563842772, 29.219031524658202, 32.52827262878418, 32.574463272094725, 33.08040237426758, 32.58930587768555, 31.308691787719727, 30.75646553039551, 30.23848648071289, 31.192547225952147, 31.925611877441405, 34.25181083679199, 34.46389884948731, 35.71088409423828, 35.67679214477539, 34.12193336486816, 33.740227127075194, 34.20403289794922, 35.66951789855957, 36.23215293884277, 38.499999618530275, 38.79036903381348, 38.372582244873044, 36.21856575012207, 32.67736930847168, 30.835976219177248, 35.70920181274414, 35.92479496002197, 29.516596603393555, 22.79550838470459, 23.393392753601074, 23.709171104431153, 24.568376541137695, 20.421105766296385, 16.800374507904053, 15.696505260467529, 14.699323272705078, 15.344282913208009] + + + +# X_train , Y_train , X_test , Y_test =get_input_out_2(CS2_36,CS2_37,sequence_length) + +# rul_pred_array +# [837.80176, 837.24915, 836.0985, 835.1865, 834.171, 831.6792, 830.0959, 828.72284, 827.1708, 828.74915, 833.5259, 837.6029, 839.40125, 838.516, 835.5311, 834.0419, 834.4539, 834.3083, 834.4248, 835.0781, 836.8628, 840.0043, 841.5062, 841.3164, 840.7996, 835.9998, 831.28827, 828.24133, 825.0877, 823.05615, 827.07684, 830.9129, 826.1222, 820.116, 816.5462, 812.44714, 812.2042, 818.64197, 821.87415, 817.87054, 814.32324, 814.03235, 814.24255, 815.6897, 818.61096, 819.88855, 816.17413, 814.18555, 813.46625, 811.41705, 809.61316, 823.10614, 827.9305, 832.0934, 838.3833, 835.25684, 826.89685, 824.1669, 824.80615, 826.2469, 825.97375, 825.47644, 826.2298, 829.8377, 824.3927, 814.0811, 804.9259, 803.8266, 798.60583, 794.55994, 788.93463, 787.74695, 787.10266, 786.9579, 788.6291, 789.12146, 788.7956, 788.65594, 787.98376, 787.7869, 787.4193, 785.84863, 784.2899, 783.3592, 782.6781, 782.5883, 782.7114, 781.39197, 778.50653, 776.30554, 774.43774, 769.98376, 765.09827, 761.0909, 758.27893, 762.47253, 766.6632, 768.11035, 771.1355, 771.82855, 769.9547, 768.65063, 767.7777, 767.20184, 768.2813, 776.0491, 783.0934, 784.0543, 778.5939, 769.866, 759.96466, 755.77185, 755.9667, 759.7628, 763.4088, 761.4069, 759.246, 755.4714, 751.8372, 746.307, 746.9851, 749.64575, 754.19836, 763.266, 768.8457, 768.3845, 765.516, 761.75653, 762.1595, 765.52185, 769.8377, 774.5597, 776.60443, 774.9713, 769.2555, 765.879, 761.5434, 754.5543, 750.92426, 748.6974, 744.4597, 747.07733, 751.97485, 751.05237, 744.63635, 741.6457, 739.8928, 743.1419, 748.3386, 748.71643, 746.2126, 743.7751, 749.9761, 755.4025, 760.1794, 755.59424, 747.63696, 744.9779, 743.6888, 744.02216, 738.1444, 739.98865, 741.2545, 739.688, 741.96063, 740.3068, 738.9793, 733.61755, 732.89575, 735.01324, 737.87366, 744.0665, 750.4198, 752.5987, 749.7184, 745.22296, 743.4749, 745.1821, 748.05664, 752.5392, 755.74335, 752.3256, 746.1864, 742.79474, 742.8424, 738.0526, 734.63293, 733.69006, 729.743, 724.3812, 727.11395, 730.4349, 725.73474, 719.5135, 713.78235, 711.3633, 714.5849, 724.1707, 726.0887, 723.68536, 719.73676, 723.77185, 731.1858, 732.5577, 727.0497, 725.54175, 722.8721, 724.2011, 725.693, 721.3984, 713.9076, 713.63477, 719.02893, 720.92004, 722.9181, 721.7645, 723.63544, 723.1545, 725.8424, 726.0764, 726.098, 727.3862, 732.78644, 737.1093, 731.4772, 724.819, 724.57214, 727.36707, 733.7621, 736.74805, 735.2433, 729.8451, 725.99896, 728.2697, 732.671, 730.26196, 724.553, 719.4757, 713.83203, 706.24524, 706.07556, 708.5496, 705.8734, 700.6906, 694.7765, 698.49963, 706.4443, 714.70337, 720.0395, 719.0912, 711.4469, 717.6629, 726.08875, 722.4636, 707.59314, 700.13947, 700.2371, 705.937, 705.33014, 696.8265, 680.61725, 674.3334, 675.8751, 679.6162, 680.45056, 686.2073, 699.19617, 705.1449, 702.249, 694.6117, 690.85284, 693.4259, 698.31506, 701.0963, 694.381, 690.0285, 685.5152, 681.71985, 678.55133, 679.72156, 679.5952, 680.9029, 686.68896, 692.74646, 694.7502, 691.7017, 688.0243, 686.4175, 684.2723, 683.68665, 687.05927, 688.0519, 685.1408, 680.30676, 680.0392, 679.203, 674.10754, 673.06757, 670.85266, 663.4579, 660.07086, 661.6087, 664.3247, 658.4527, 653.60754, 648.4374, 645.88525, 642.9193, 647.4533, 647.6902, 648.9184, 655.72864, 661.09174, 662.8973, 660.25824, 658.77124, 651.9669, 645.95404, 641.4798, 643.6891, 645.3373, 644.35846, 639.1144, 640.7921, 647.9606, 656.98364, 662.3551, 665.0342, 662.33374, 658.2845, 654.632, 651.263, 652.33466, 651.2839, 645.83057, 638.94165, 637.42145, 637.6391, 632.96716, 628.61066, 625.057, 617.15515, 607.1124, 606.40765, 606.7627, 603.7588, 599.1633, 595.5037, 592.4302, 589.8393, 594.1935, 594.7594, 594.3848, 589.8862, 584.2606, 581.8957, 577.9967, 575.41486, 574.81323, 572.1382, 564.6007, 564.935, 565.2028, 562.3564, 564.17267, 565.2894, 555.48615, 544.46985, 541.6184, 542.78, 539.9745, 540.6187, 536.6134, 532.9326, 534.992, 539.6227, 541.6517, 540.8759, 540.4313, 538.4404, 535.7714, 536.2209, 537.91956, 539.75793, 536.50055, 533.95984, 533.32874, 534.3157, 535.5425, 529.07684, 529.19293, 527.3878, 523.2802, 517.39795, 519.9137, 521.82117, 516.69824, 511.86084, 510.09515, 507.99042, 503.3416, 505.612, 508.00235, 511.09024, 506.8199, 499.01456, 493.63516, 488.65527, 484.68814, 488.91644, 492.49506, 490.09464, 489.3327, 486.55963, 481.72565, 477.89062, 473.54794, 468.58148, 465.17743, 457.8881, 461.88077, 465.0978, 468.0187, 469.15268, 465.9466, 460.5245, 457.95782, 448.4376, 445.6657, 447.6626, 447.4087, 448.13672, 440.1419, 429.206, 417.83276, 410.1504, 402.2289, 403.70035, 399.9311, 385.98904, 370.2232, 361.2846, 357.2215, 350.3539, 337.56946, 341.03964, 349.50006, 342.4695, 330.21597, 324.4836, 323.48126, 318.607, 316.2666, 322.44763, 327.63644, 317.72977, 307.72253, 305.83047, 309.39008, 305.17157, 306.18823, 311.93277, 317.1166, 318.5666, 315.66107, 315.3028, 317.08438, 319.15094, 316.88544, 316.11615, 317.4477, 314.2443, 310.57816, 309.8604, 310.06833, 309.6522, 308.2667, 303.12314, 298.10745, 296.00406, 295.6236, 298.24164, 291.21344, 284.68805, 282.92078, 283.36652, 280.23514, 279.29538, 283.66913, 284.80566, 278.15463, 274.29877, 273.7735, 274.1728, 266.60797, 265.63663, 269.96237, 269.29, 262.02777, 254.71655, 254.32861, 257.1684, 254.08496, 251.00009, 248.8509, 247.51059, 244.7972, 238.3995, 241.2109, 243.4803, 238.43742, 240.2468, 247.16353, 256.4035, 257.5721, 253.87263, 252.46355, 247.14302, 240.34244, 236.79861, 234.01321, 230.16426, 224.40865, 220.68164, 217.1976, 216.90457, 217.57133, 219.36206, 220.85445, 223.63394, 220.04932, 221.4126, 223.48564, 215.58223, 213.97168, 218.74963, 212.65393, 209.27693, 213.51538, 223.19809, 219.27303, 207.41757, 204.41428, 208.11926, 202.10565, 203.76837, 206.14401, 204.57497, 199.64435, 194.41296, 185.01364, 179.24785, 180.00243, 178.63344, 177.56592, 180.66995, 190.8287, 185.23721, 173.443, 170.01222, 171.9204, 172.43979, 166.97333, 167.90237, 172.20445, 167.35245, 159.11557, 152.87354, 148.34, 148.05777, 145.93689, 150.0643, 153.3365, 152.08842, 145.25537, 139.10936, 136.17459, 133.54681, 131.36452, 136.02701, 141.73312, 144.29788, 145.52328, 144.09383, 143.05441, 140.90955, 141.65207, 142.61777, 143.05325, 142.13441, 140.08275, 139.749, 139.21175, 135.5651, 131.44594, 130.41434, 133.28102, 134.03891, 129.08243, 124.14127, 121.78352, 118.52834, 116.22025, 114.89071, 117.4739, 122.4624, 125.23069, 119.878174, 115.19771, 113.853195, 109.7183, 106.796486, 110.15104, 111.5376, 113.53227, 109.74314, 104.40353, 100.48576, 99.54789, 96.54811, 95.850975, 99.040726, 101.072136, 104.11758, 105.560745, 98.821815, 94.70805, 94.50092, 93.032394, 93.755356, 97.3617, 99.48755, 100.01741, 99.60188, 97.74243, 98.64872, 98.56181, 99.196655, 100.063965, 101.35634, 101.67732, 100.95293, 101.127594, 95.87315, 90.71084, 88.89375, 89.44081, 89.83371, 89.904655, 88.566956, 86.29763, 85.30243, 84.03261, 83.97205, 85.75832, 87.39823, 89.20949, 88.45851, 86.41845, 84.415306, 81.50712, 77.80872, 77.339676, 79.81583, 81.13301, 81.05561, 77.23153, 72.89038, 72.391945, 71.07969, 70.87498, 72.261375, 75.0746, 76.70819, 76.56844, 73.12854, 71.438965, 70.28694, 71.26936, 72.242935, 74.03232, 75.545364, 76.54635, 76.94473, 75.84058, 74.42658, 75.3491, 76.233475, 76.89633, 78.132034, 78.789154, 78.465004, 77.8358, 78.098366, 76.230125, 74.119095, 76.35391, 77.10805, 78.140526, 76.72907, 73.803, 73.808334, 72.25221, 70.95018, 70.440605, 72.982834, 75.666725, 77.45668, 74.26027, 71.673676, 70.28499, 68.34596, 67.44149, 67.59604, 70.240616, 71.528824, 71.34795, 66.34916, 61.83895, 59.476116, 61.63697, 61.775856, 58.013466, 54.73246, 54.357708, 50.997528, 50.980225, 44.46351, 38.584133, 37.092083, 36.34773, 37.76707] +# true_out_array +# [731.0, 730.0, 729.0, 728.0, 727.0, 726.0, 725.0, 724.0, 723.0, 722.0, 721.0, 720.0, 719.0, 718.0, 717.0, 716.0, 715.0, 714.0, 713.0, 712.0, 711.0, 710.0, 709.0, 708.0, 707.0, 706.0, 705.0, 704.0, 703.0, 702.0, 701.0, 700.0, 699.0, 698.0, 697.0, 696.0, 695.0, 694.0, 693.0, 692.0, 691.0, 690.0, 689.0, 688.0, 687.0, 686.0, 685.0, 684.0, 683.0, 682.0, 681.0, 680.0, 679.0, 678.0, 677.0, 676.0, 675.0, 674.0, 673.0, 672.0, 671.0, 670.0, 669.0, 668.0, 667.0, 666.0, 665.0, 664.0, 663.0, 662.0, 661.0, 660.0, 659.0, 658.0, 657.0, 656.0, 655.0, 654.0, 653.0, 652.0, 651.0, 650.0, 649.0, 648.0, 647.0, 646.0, 645.0, 644.0, 643.0, 642.0, 641.0, 640.0, 639.0, 638.0, 637.0, 636.0, 635.0, 634.0, 633.0, 632.0, 631.0, 630.0, 629.0, 628.0, 627.0, 626.0, 625.0, 624.0, 623.0, 622.0, 621.0, 620.0, 619.0, 618.0, 617.0, 616.0, 615.0, 614.0, 613.0, 612.0, 611.0, 610.0, 609.0, 608.0, 607.0, 606.0, 605.0, 604.0, 603.0, 602.0, 601.0, 600.0, 599.0, 598.0, 597.0, 596.0, 595.0, 594.0, 593.0, 592.0, 591.0, 590.0, 589.0, 588.0, 587.0, 586.0, 585.0, 584.0, 583.0, 582.0, 581.0, 580.0, 579.0, 578.0, 577.0, 576.0, 575.0, 574.0, 573.0, 572.0, 571.0, 570.0, 569.0, 568.0, 567.0, 566.0, 565.0, 564.0, 563.0, 562.0, 561.0, 560.0, 559.0, 558.0, 557.0, 556.0, 555.0, 554.0, 553.0, 552.0, 551.0, 550.0, 549.0, 548.0, 547.0, 546.0, 545.0, 544.0, 543.0, 542.0, 541.0, 540.0, 539.0, 538.0, 537.0, 536.0, 535.0, 534.0, 533.0, 532.0, 531.0, 530.0, 529.0, 528.0, 527.0, 526.0, 525.0, 524.0, 523.0, 522.0, 521.0, 520.0, 519.0, 518.0, 517.0, 516.0, 515.0, 514.0, 513.0, 512.0, 511.0, 510.0, 509.0, 508.0, 507.0, 506.0, 505.0, 504.0, 503.0, 502.0, 501.0, 500.0, 499.0, 498.0, 497.0, 496.0, 495.0, 494.0, 493.0, 492.0, 491.0, 490.0, 489.0, 488.0, 487.0, 486.0, 485.0, 484.0, 483.0, 482.0, 481.0, 480.0, 479.0, 478.0, 477.0, 476.0, 475.0, 474.0, 473.0, 472.0, 471.0, 470.0, 469.0, 468.0, 467.0, 466.0, 465.0, 464.0, 463.0, 462.0, 461.0, 460.0, 459.0, 458.0, 457.0, 456.0, 455.0, 454.0, 453.0, 452.0, 451.0, 450.0, 449.0, 448.0, 447.0, 446.0, 445.0, 444.0, 443.0, 442.0, 441.0, 440.0, 439.0, 438.0, 437.0, 436.0, 435.0, 434.0, 433.0, 432.0, 431.0, 430.0, 429.0, 428.0, 427.0, 426.0, 425.0, 424.0, 423.0, 422.0, 421.0, 420.0, 419.0, 418.0, 417.0, 416.0, 415.0, 414.0, 413.0, 412.0, 411.0, 410.0, 409.0, 408.0, 407.0, 406.0, 405.0, 404.0, 403.0, 402.0, 401.0, 400.0, 399.0, 398.0, 397.0, 396.0, 395.0, 394.0, 393.0, 392.0, 391.0, 390.0, 389.0, 388.0, 387.0, 386.0, 385.0, 384.0, 383.0, 382.0, 381.0, 380.0, 379.0, 378.0, 377.0, 376.0, 375.0, 374.0, 373.0, 372.0, 371.0, 370.0, 369.0, 368.0, 367.0, 366.0, 365.0, 364.0, 363.0, 362.0, 361.0, 360.0, 359.0, 358.0, 357.0, 356.0, 355.0, 354.0, 353.0, 352.0, 351.0, 350.0, 349.0, 348.0, 347.0, 346.0, 345.0, 344.0, 343.0, 342.0, 341.0, 340.0, 339.0, 338.0, 337.0, 336.0, 335.0, 334.0, 333.0, 332.0, 331.0, 330.0, 329.0, 328.0, 327.0, 326.0, 325.0, 324.0, 323.0, 322.0, 321.0, 320.0, 319.0, 318.0, 317.0, 316.0, 315.0, 314.0, 313.0, 312.0, 311.0, 310.0, 309.0, 308.0, 307.0, 306.0, 305.0, 304.0, 303.0, 302.0, 301.0, 300.0, 299.0, 298.0, 297.0, 296.0, 295.0, 294.0, 293.0, 292.0, 291.0, 290.0, 289.0, 288.0, 287.0, 286.0, 285.0, 284.0, 283.0, 282.0, 281.0, 280.0, 279.0, 278.0, 277.0, 276.0, 275.0, 274.0, 273.0, 272.0, 271.0, 270.0, 269.0, 268.0, 267.0, 266.0, 265.0, 264.0, 263.0, 262.0, 261.0, 260.0, 259.0, 258.0, 257.0, 256.0, 255.0, 254.0, 253.0, 252.0, 251.0, 250.0, 249.0, 248.0, 247.0, 246.0, 245.0, 244.0, 243.0, 242.0, 241.0, 240.0, 239.0, 238.0, 237.0, 236.0, 235.0, 234.0, 233.0, 232.0, 231.0, 230.0, 229.0, 228.0, 227.0, 226.0, 225.0, 224.0, 223.0, 222.0, 221.0, 220.0, 219.0, 218.0, 217.0, 216.0, 215.0, 214.0, 213.0, 212.0, 211.0, 210.0, 209.0, 208.0, 207.0, 206.0, 205.0, 204.0, 203.0, 202.0, 201.0, 200.0, 199.0, 198.0, 197.0, 196.0, 195.0, 194.0, 193.0, 192.0, 191.0, 190.0, 189.0, 188.0, 187.0, 186.0, 185.0, 184.0, 183.0, 182.0, 181.0, 180.0, 179.0, 178.0, 177.0, 176.0, 175.0, 174.0, 173.0, 172.0, 171.0, 170.0, 169.0, 168.0, 167.0, 166.0, 165.0, 164.0, 163.0, 162.0, 161.0, 160.0, 159.0, 158.0, 157.0, 156.0, 155.0, 154.0, 153.0, 152.0, 151.0, 150.0, 149.0, 148.0, 147.0, 146.0, 145.0, 144.0, 143.0, 142.0, 141.0, 140.0, 139.0, 138.0, 137.0, 136.0, 135.0, 134.0, 133.0, 132.0, 131.0, 130.0, 129.0, 128.0, 127.0, 126.0, 125.0, 124.0, 123.0, 122.0, 121.0, 120.0, 119.0, 118.0, 117.0, 116.0, 115.0, 114.0, 113.0, 112.0, 111.0, 110.0, 109.0, 108.0, 107.0, 106.0, 105.0, 104.0, 103.0, 102.0, 101.0, 100.0, 99.0, 98.0, 97.0, 96.0, 95.0, 94.0, 93.0, 92.0, 91.0, 90.0, 89.0, 88.0, 87.0, 86.0, 85.0, 84.0, 83.0, 82.0, 81.0, 80.0, 79.0, 78.0, 77.0, 76.0, 75.0, 74.0, 73.0, 72.0, 71.0, 70.0, 69.0, 68.0, 67.0, 66.0, 65.0, 64.0, 63.0, 62.0, 61.0, 60.0, 59.0, 58.0, 57.0, 56.0, 55.0, 54.0, 53.0, 52.0, 51.0, 50.0, 49.0, 48.0, 47.0, 46.0, 45.0, 44.0, 43.0, 42.0, 41.0, 40.0, 39.0, 38.0, 37.0, 36.0, 35.0, 34.0, 33.0, 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] +# error_pred_array +# [106.8017578125, 107.24916381835938, 107.09857788085938, 107.18652954101563, 107.17105712890626, 105.679150390625, 105.09588623046875, 104.722900390625, 104.17068481445312, 106.74915161132813, 112.5259033203125, 117.60294189453126, 120.4012939453125, 120.51604614257812, 118.531201171875, 118.04191284179687, 119.45393676757813, 120.308251953125, 121.4248046875, 123.0781982421875, 125.86275634765624, 130.00436401367188, 132.5062683105469, 133.3163635253906, 133.7996032714844, 129.99985961914064, 126.28825073242187, 124.241259765625, 122.08763427734375, 121.05615234375, 126.07679443359375, 130.9129638671875, 127.12218627929687, 122.11602172851562, 119.54619140625, 116.44710083007813, 117.20416259765625, 124.6419189453125, 128.87418212890626, 125.87058715820312, 123.323291015625, 124.03239135742187, 125.24253540039062, 127.6897705078125, 131.61094970703124, 133.88858032226562, 131.1741516113281, 130.18557739257812, 130.466259765625, 129.41697998046874, 128.61314697265624, 143.10620727539063, 148.93040771484374, 154.093310546875, 161.38328857421874, 159.25676879882812, 153.34186401367188, 153.0009338378906, 154.77952270507814, 154.2467834472656, 154.97373046875, 155.47647094726562, 157.2298583984375, 161.83776245117187, 157.39271240234376, 148.08115844726564, 139.92596435546875, 139.82662353515624, 135.60584106445313, 132.55995483398436, 128.39576416015626, 129.30995483398436, 128.9197570800781, 129.02015380859376, 131.6291015625, 133.12144165039064, 133.79563598632814, 134.65589599609376, 134.9836853027344, 135.78692626953125, 136.41942749023437, 135.84865112304686, 135.2898742675781, 135.3591552734375, 135.678125, 136.58834228515624, 137.71140747070314, 137.39193115234374, 135.50650024414062, 134.30554809570313, 133.43773193359374, 129.983740234375, 126.09824829101562, 123.090869140625, 121.27896728515626, 126.47249145507813, 131.66317749023438, 134.11036376953126, 138.1355224609375, 139.82849731445313, 138.95473022460936, 138.65062255859374, 138.77760009765626, 139.20184936523438, 141.28125610351563, 150.04909057617186, 158.093359375, 160.05431518554687, 155.5939208984375, 147.86602172851562, 138.9646423339844, 135.77183837890624, 136.9666748046875, 141.76278686523438, 146.40884399414062, 145.40692749023438, 144.246044921875, 141.47144165039063, 138.8371337890625, 134.30701904296876, 135.98505249023438, 141.79879760742188, 148.11781005859376, 155.26597900390624, 161.8457458496094, 162.38451538085937, 160.51602172851562, 157.75650634765626, 159.15952758789064, 163.5218505859375, 168.8377197265625, 174.559619140625, 177.6044189453125, 176.97130126953124, 172.2554504394531, 169.879052734375, 166.54342651367188, 160.55439453125, 157.9242431640625, 156.6973449707031, 153.459716796875, 157.07733764648438, 162.97486572265626, 163.05238647460936, 157.6363525390625, 155.6457092285156, 154.89284057617186, 159.14182739257814, 165.3385986328125, 166.71649169921875, 165.98580322265624, 163.775048828125, 170.97605590820314, 177.4025390625, 183.17938842773438, 179.59425659179686, 172.63693237304688, 170.97788696289064, 170.6887939453125, 172.0221923828125, 167.1444580078125, 169.98863525390624, 172.2545654296875, 171.97409057617188, 174.96064453125, 174.30679321289062, 173.97936401367187, 169.61762084960938, 169.89578857421876, 173.01317138671874, 176.9396728515625, 184.0664794921875, 191.419921875, 194.59866943359376, 192.71838989257813, 189.2229431152344, 188.47494506835938, 191.18211059570314, 195.05662841796874, 200.53916015625, 204.74340209960937, 202.32561645507812, 197.18637084960938, 194.794775390625, 195.84238891601564, 192.05261840820313, 189.63292846679687, 189.690087890625, 186.74298706054688, 182.38124389648436, 186.11392211914062, 190.43483276367186, 186.73477783203126, 181.5135009765625, 176.7824279785156, 175.36327514648437, 179.58489990234375, 190.1707763671875, 196.873583984375, 198.3995788574219, 192.51524047851564, 193.77179565429688, 202.18579711914063, 204.55764770507812, 200.049755859375, 199.54173583984374, 197.8720275878906, 200.201123046875, 202.69306030273438, 199.39838256835938, 192.90757446289064, 193.63469848632812, 200.0288818359375, 202.9200927734375, 205.9181396484375, 205.76450805664064, 208.63541259765626, 209.154443359375, 212.8423645019531, 214.07640380859374, 215.0979736328125, 217.38623046875, 223.78648681640624, 229.1092956542969, 224.47726440429688, 218.8189453125, 219.5721923828125, 223.36707763671876, 230.76204833984374, 234.74806518554686, 234.2433349609375, 229.8450439453125, 226.9989990234375, 230.26968383789062, 235.67100830078124, 234.2619384765625, 229.55297241210937, 225.4757568359375, 220.8319580078125, 214.24515380859376, 215.07557373046876, 218.5496032714844, 216.87337646484374, 212.69066162109374, 207.77647705078124, 212.4995910644531, 221.44427490234375, 230.7033935546875, 237.03948974609375, 237.09111633300782, 230.44684448242188, 237.6629150390625, 247.08877563476562, 244.46361083984374, 230.5930908203125, 224.139453125, 225.2371032714844, 231.93701782226563, 232.33006591796874, 224.82645263671876, 209.61727600097657, 204.33335876464844, 206.87513122558593, 211.6161682128906, 213.45057983398436, 220.20721435546875, 234.19617919921876, 241.14498901367188, 239.24900512695314, 232.61168212890624, 229.85286865234374, 233.42586669921874, 239.31504516601564, 243.09632568359376, 237.38095092773438, 234.02857666015626, 230.51520080566405, 227.71993408203124, 225.55133056640625, 227.72156372070313, 228.59523010253906, 230.9028778076172, 237.68890686035155, 244.74642944335938, 247.75022583007814, 245.701708984375, 243.0243347167969, 242.41748046875, 241.27228393554688, 241.6866424560547, 246.05927429199218, 248.05186462402344, 246.14089965820312, 242.30682983398438, 243.03912963867188, 243.2030029296875, 239.10759582519532, 239.06760864257814, 237.85259704589845, 231.45787963867187, 229.0707977294922, 231.60869750976562, 235.32467041015624, 230.45263061523437, 226.60755004882813, 222.43735961914064, 220.88528137207032, 218.9193145751953, 224.45324096679687, 225.69020080566406, 227.91840209960938, 235.72862548828124, 242.0917236328125, 244.8972595214844, 243.25823669433595, 242.7712829589844, 236.96685180664062, 231.95407409667968, 228.4798126220703, 231.68909301757813, 234.33731079101562, 234.3584716796875, 230.1144226074219, 232.7921142578125, 240.96051635742188, 250.98364868164063, 257.3550537109375, 261.0341827392578, 259.3337371826172, 256.2845489501953, 253.63208923339843, 251.26297912597656, 253.33463134765626, 253.28392028808594, 248.8305694580078, 242.9416961669922, 242.42147521972657, 243.63910827636718, 239.96717834472656, 236.61067810058594, 234.05697021484374, 227.15514221191407, 219.05592346191406, 219.67520446777343, 220.3845672607422, 218.2250213623047, 216.08983154296874, 214.55523681640625, 211.94017944335937, 208.79502563476564, 213.193505859375, 214.759423828125, 215.38479614257812, 211.88626708984376, 207.2621276855469, 209.0108673095703, 206.70924072265626, 204.54959106445312, 203.4871032714844, 200.42527770996094, 193.78063049316407, 194.9349395751953, 198.00064697265626, 196.13331604003906, 197.17262268066406, 199.28938903808594, 190.48612060546876, 180.46985778808593, 178.94498596191406, 182.30372314453126, 182.17596740722655, 183.37083129882814, 178.88883056640626, 174.93262939453126, 177.99194946289063, 183.62265014648438, 186.6516906738281, 186.87590637207032, 187.43128967285156, 186.44041442871094, 184.77142333984375, 186.22093200683594, 188.91959228515626, 191.75789794921874, 189.50049438476563, 187.9597900390625, 188.32879333496095, 190.31566162109374, 192.54249877929686, 187.0768280029297, 190.5132598876953, 192.28074340820314, 190.25094604492188, 186.3477783203125, 188.43851623535156, 189.0863067626953, 183.9326934814453, 180.43062438964844, 179.03975830078124, 175.9904815673828, 172.34158020019532, 175.61199951171875, 179.00237731933595, 183.0902587890625, 179.81983947753906, 173.01455993652343, 168.6351104736328, 164.6552764892578, 161.68812255859376, 166.91649169921874, 171.495068359375, 170.09461364746093, 170.3326843261719, 168.55962524414062, 164.7256591796875, 161.89059448242188, 158.54799194335936, 154.58148498535155, 152.17744140625, 145.88811950683595, 150.88079528808595, 155.09781188964843, 159.01866760253907, 161.1527130126953, 158.9465362548828, 154.52452087402344, 152.95787658691407, 144.4376007080078, 142.6656707763672, 145.66258850097657, 146.40871887207032, 148.13670349121094, 141.14189758300782, 131.87977905273436, 123.6688720703125, 118.89546813964844, 113.04057312011719, 114.23306884765626, 110.44611511230468, 97.51891784667968, 85.08323364257812, 78.68525085449218, 75.26891784667968, 69.14007415771485, 59.50851287841797, 60.639642333984376, 68.37369995117187, 62.735595703125, 54.932237243652345, 51.954647827148435, 51.54478912353515, 48.50131530761719, 49.14748077392578, 55.10923614501953, 60.109623718261716, 51.883201599121094, 45.67605438232422, 44.85676574707031, 47.547821044921875, 47.58889617919922, 48.23987731933594, 54.58482360839844, 59.22719116210938, 60.001705932617185, 55.666220092773436, 54.1843994140625, 55.517295837402344, 57.72265777587891, 55.46001434326172, 54.91736755371094, 56.44767456054687, 54.2442626953125, 51.57813415527344, 51.860400390625, 53.068338012695314, 53.72517852783203, 53.53219146728516, 50.85009613037109, 48.34832916259766, 46.63679962158203, 46.587641906738284, 48.92315826416016, 45.197218322753905, 42.47053527832031, 42.42797698974609, 43.77884063720703, 42.41496276855469, 43.43930206298828, 47.83823852539062, 49.602532958984376, 44.99979858398437, 44.47834167480469, 45.724876403808594, 46.012307739257814, 41.54290924072266, 39.32746124267578, 44.60581665039062, 46.11036376953125, 40.866015625, 39.80544586181641, 38.91185607910156, 43.62619171142578, 43.48525543212891, 40.63693695068359, 39.722059631347655, 40.381719970703124, 40.92910919189453, 40.43625946044922, 45.1573974609375, 52.02257232666015, 48.56901397705078, 48.05445556640625, 52.17318878173828, 55.466845703125, 55.739654541015625, 54.01840362548828, 54.051690673828126, 48.23794097900391, 41.82695617675781, 39.976698303222655, 38.78358154296875, 36.631352233886716, 32.10371704101563, 29.16675262451172, 27.327642822265624, 25.854829406738283, 26.493132019042967, 30.202236938476563, 31.807963562011718, 34.1703857421875, 33.280259704589845, 32.92369384765625, 36.733647155761716, 36.5574462890625, 40.62167510986328, 45.30859222412109, 44.16117553710937, 41.90992279052735, 43.72123718261719, 47.174137878417966, 44.556575012207034, 42.87532043457031, 44.29874114990234, 45.69954223632813, 41.068791198730466, 38.023095703125, 40.871473693847655, 40.962510681152345, 34.4193115234375, 30.350871276855468, 28.587992858886718, 28.949136352539064, 34.29034576416016, 35.244712829589844, 32.48330535888672, 35.492636108398436, 38.915185546875, 31.491596984863282, 31.710682678222657, 33.706322479248044, 37.92001190185547, 41.377970123291014, 38.551904296875, 36.301979064941406, 35.198622131347655, 33.89222183227539, 30.950508880615235, 28.624395751953124, 28.092375183105467, 28.319123840332033, 29.985074615478517, 28.703287506103514, 29.460755157470704, 27.660344696044923, 26.011257934570313, 23.915016174316406, 24.5432861328125, 25.5913444519043, 26.988822174072265, 24.569823455810546, 25.98686752319336, 24.42647933959961, 19.939124298095702, 17.767887115478516, 17.874130249023438, 15.76476593017578, 16.114447021484374, 16.529776763916015, 16.479144287109374, 16.948919677734374, 15.333244323730469, 13.940868377685547, 13.623796081542968, 15.400931549072265, 17.845833587646485, 19.182776641845702, 18.436087799072265, 17.064998626708984, 17.26526794433594, 19.717427062988282, 21.24462432861328, 22.28343276977539, 22.651512908935548, 21.249842834472656, 18.98738784790039, 21.115738677978516, 19.83998794555664, 20.588232421875, 20.658695220947266, 22.07738494873047, 20.25640106201172, 19.66504821777344, 20.30720672607422, 21.67621765136719, 20.724027252197267, 18.372946166992186, 17.78198699951172, 19.340448760986327, 20.073881530761717, 20.24507369995117, 19.188165283203126, 19.993731689453124, 18.949485778808594, 17.413033294677735, 14.311641693115234, 13.426365661621094, 16.404698181152344, 17.533022308349608, 16.289517211914063, 16.230094146728515, 15.966808319091797, 16.082582092285158, 13.866648864746093, 12.27248764038086, 12.003680419921874, 13.715357208251953, 13.196182250976562, 11.97830810546875, 12.697190856933593, 14.522168731689453, 15.576066589355468, 15.711257934570312, 15.452623748779297, 12.863646697998046, 12.036328125, 12.553289794921875, 13.430391693115235, 15.031000900268555, 14.38227424621582, 14.745211410522462, 14.62278938293457, 15.559734725952149, 15.446501922607421, 15.371404647827148, 16.57732391357422, 17.396385955810548, 17.248658752441408, 17.507235717773437, 17.300888061523438, 16.413942718505858, 14.680451202392579, 13.553557586669921, 14.59645881652832, 16.375525283813477, 16.628854751586914, 16.157353591918945, 14.618912506103516, 12.806095123291016, 13.34145736694336, 12.702802276611328, 12.91172981262207, 15.199021530151366, 17.664461517333983, 18.75383529663086, 19.56844291687012, 17.617464065551758, 18.16679801940918, 17.549903869628906, 18.36036605834961, 20.252636337280272, 23.172793579101562, 25.545364379882812, 27.5463436126709, 28.944729614257813, 28.84058532714844, 28.426579666137695, 30.349101257324218, 32.23348808288574, 33.89633636474609, 36.13203010559082, 37.789146423339844, 38.4650016784668, 38.83580894470215, 40.09836616516113, 39.23013458251953, 38.11909370422363, 41.35390853881836, 43.108053588867186, 45.14053115844727, 44.72906761169433, 42.80300025939941, 43.80832977294922, 43.25221633911133, 42.950191497802734, 43.440609741210935, 46.98283348083496, 50.66671600341797, 53.45667915344238, 51.26027565002441, 49.67367324829102, 49.284981918334964, 48.34595794677735, 48.44149742126465, 49.59604263305664, 53.24061279296875, 55.528814697265624, 56.34794807434082, 52.34915771484375, 48.83895835876465, 47.47611427307129, 50.63696479797363, 51.775851821899415, 49.01346702575684, 46.732459449768065, 47.35771083831787, 44.997528076171875, 45.98022804260254, 40.463508224487306, 35.58413314819336, 35.09208116531372, 35.34773006439209, 37.767073440551755] + + + + +for FD in [1]: ######['1','2','3','4'] + # if max_life==110 and FD=='1': + # continue + # if max_life==110 and FD=='2': + # continue + + FD_feature_columns=[] + + + + + + + + + + + + + method_name='grid_FD{}_TaFCN_npseed{}_segment_{}'.format(FD,seed,segment) + # method_name='FCN_RUL_1out_train_split_test' + dataset='cmapssd' + + + def unbalanced_penalty_score_1out(Y_test,Y_pred) : + + s=0 + for i in range(len(Y_pred)): + if Y_pred[i]>Y_test[i]: + s=s+math.exp((Y_pred[i]-Y_test[i])/10)-1 + else: + s=s+math.exp((Y_test[i]-Y_pred[i])/13)-1 + print('unbalanced_penalty_score{}'.format(s)) + return s + + def error_range_1out(Y_test,Y_pred) : + error_range=(Y_test-Y_pred).min(),(Y_test-Y_pred).max() + print('error range{}'.format(error_range)) + return error_range + + + print(X_train.shape) + X_train=X_train.reshape(X_train.shape[0],X_train.shape[1],1,1) + + X_test=X_test.reshape(X_test.shape[0],X_train.shape[1],1,1) + + # x_train_array , y_train_array , x_test_array , y_test_array=get_input_out_2(CS2_36,CS2_37,20) + + + + import six + + import keras.backend as K + from keras.utils.generic_utils import deserialize_keras_object + from keras.utils.generic_utils import serialize_keras_object + from tensorflow.python.ops import math_ops + from tensorflow.python.util.tf_export import tf_export + + + + + + from tensorflow.python.ops import math_ops + + + + + + + #########np.greater_equal([4, 2, 1], [2, 2, 2])array([ True, True, False]) + #############tf.cast( ) 或者K.cast( ) 是执行 tensorflow 中的张量数据类型转换,比如读入的图片是int8类型的,一定要在训练的时候把图片的数据格式转换为float32. + + ################reduce_sum reduce dimensinality and get sum + + + + + #return inputs*x + + + + + + + # reshape_size=len(FD_feature_columns)*int((sequence_length/3)) + def FCN_model(): + # in0 = keras.Input(shape=(sequence_length,train_feature_slice.shape[1])) # shape: (batch_size, 3, 2048) + # in0_shaped= keras.layers.Reshape((train_feature_slice.shape[1],sequence_length,1))(in0) + + in0 = keras.Input(shape=(X_train.shape[1],X_train.shape[2],X_train.shape[3]),name='layer_13') # shape: (batch_size, 3, 2048) + # begin_senet=SeBlock()(in0) + x = keras.layers.AveragePooling2D(pool_size=(int(sequence_length/segment), 1), strides=int(sequence_length/segment),name='layer_12')(in0) + # x = keras.layers.Reshape((-1,1))(x) + + # x = keras.layers.Reshape((len(FD_feature_columns)*int((sequence_length/3)),))(x) + x = keras.layers.Reshape((-1,))(x) + # x = keras.layers.GlobalAveragePooling2D()(in0) + x = keras.layers.Dense(1, use_bias=False,activation=keras.activations.relu)(x) + kernel = keras.layers.Dense(1, use_bias=False,activation=keras.activations.hard_sigmoid,name='layer_11')(x) + begin_senet= keras.layers.Multiply(name='layer_10')([in0,kernel]) #给通道加权重 + + + + + # conv0 = keras.layers. + + + conv0 = keras.layers.Conv2D(num_filter1, kernel1_size, strides=1, padding='same',name='layer_9')(begin_senet) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_8')(conv0) + + # conv0 = keras.layers.Dropout(dropout)(conv0) + conv0 = keras.layers.Conv2D(num_filter2, kernel2_size, strides=1, padding='same',name='layer_7')(conv0) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_6')(conv0) + + # conv0 = keras.layers.Dropout(dropout)(conv0) + conv0 = keras.layers.Conv2D(num_filter3, kernel3_size, strides=1, padding='same',name='layer_5')(conv0) + conv0 = keras.layers.BatchNormalization()(conv0) + conv0 = keras.layers.Activation('relu',name='layer_4')(conv0) + conv0 = keras.layers.GlobalAveragePooling2D(name='layer_3')(conv0) + conv0 = keras.layers.Dense(64, activation='relu',name='layer_2')(conv0) + out = keras.layers.Dense(1, activation='relu',name='layer_1')(conv0) + + + + + + + model = keras.models.Model(inputs=in0, outputs=[out]) + + return model + + + # ##############shuaffle the data + np.random.seed(seed) + index=np.arange(X_train.shape[0]) + np.random.shuffle(index,) + + + X_train=X_train[index]#X_train是训练集,y_train是训练标签 + Y_train=Y_train[index] + + #X_train, Xtest, Y_train, ytest = train_test_split(X_train, Y_train, test_size=0.7, random_state=0) + + + if __name__ == '__main__': + + error_record=[] + index_record=[] + unbalanced_penalty_score_record=[] + error_range_left_record=[] + error_range_right_record=[] + index_min_val_loss_record,min_val_loss_record=[],[] + + if os.path.exists(r"F:\桌面11.17\project\RUL\experiments_result\method_error_txt\{}.txt".format(method_name)):os.remove(r"F:\桌面11.17\project\RUL\experiments_result\method_error_txt\{}.txt".format(method_name)) + + + + + + rul_pred_array_list=[] + true_out_array_list=[] + error_pred_array_list=[] + + ####### single output + + for i in range(run_times): + print('xxx') + + model=FCN_model() + plot_model(model, to_file=r"F:\桌面11.17\project\RUL\Flatten.png", show_shapes=True)#########to_file='Flatten.png',r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5 + + optimizer = keras.optimizers.Adam() + model.compile(loss='mse',#loss=root_mean_squared_error, + optimizer=optimizer, + metrics=[root_mean_squared_error]) + + reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor = 'loss', factor=0.5, + patience=patience_reduce_lr, min_lr=0.0001) + + + # verbose=1, validation_split=VALIDATION_SPLIT, callbacks = [reduce_lr]) + model_name='{}_dataset_{}_log{}_time{}'.format(method_name,dataset,i,datetime.datetime.now().strftime('%Y%m%d%H%M%S')) + earlystopping=keras.callbacks.EarlyStopping(monitor='loss',patience=patience,verbose=1) + modelcheckpoint=keras.callbacks.ModelCheckpoint(monitor='loss',filepath=r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),save_best_only=True,verbose=1) + hist = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epochs, + verbose=1, validation_data=(X_test, Y_test), callbacks = [reduce_lr,earlystopping,modelcheckpoint]) + # hist = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epochs, + # verbose=1, validation_data=(X_test, Y_test), callbacks = [reduce_lr,earlystopping,modelcheckpoint]) + log = pd.DataFrame(hist.history) + log.to_excel(r"F:\桌面11.17\project\RUL\experiments_result\log\{}_dataset_{}_log{}_time{}.xlsx".format(method_name,dataset,i,datetime.datetime.now().strftime('%Y%m%d%H%M%S'))) + + print(hist.history.keys()) + epochs=range(len(hist.history['loss'])) + plt.figure() + plt.plot(epochs,hist.history['loss'],'b',label='Training loss') + plt.plot(epochs,hist.history['val_loss'],'r',label='Validation val_loss') + plt.title('Traing and Validation loss') + plt.legend() + plt.show() + + + + # model=keras.models.load_model(r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),custom_objects={'root_mean_squared_error': root_mean_squared_error,'Smooth':Smooth,'SeBlock':SeBlock}) + model=keras.models.load_model(r"F:\桌面11.17\project\RUL\model\FCN_RUL_1out_train_valid_test\{}.h5".format(model_name),custom_objects={'root_mean_squared_error': root_mean_squared_error}) + for layer in model.layers: + layer.trainable=False + # score = model.evaluate(X_test, Y_test) ############forbid evaluate!!!!!!!!!!!!!!!!!! + # print('score[1]:{}'.format(score[1])) ############forbid evaluate!!!!!!!!!!!!!!!!!! + + Y_pred=model.predict(X_test) + # rmse=root_mean_squared_error(Y_test,Y_pred) + # with tf.Session() as sess: + # print(rmse.eval()) + rmse_value=rmse(Y_test,Y_pred) + # print('rmse:{}'.format(rmse_value)) + + + rul_pred_array=np.array(Y_pred) + rul_pred_array=rul_pred_array.reshape(rul_pred_array.shape[0]) + + # print(rul_pred_array.shape) + + true_out_array=np.array(Y_test) + + error_pred_array=rul_pred_array-true_out_array + + error_pred_array=np.maximum(error_pred_array, -error_pred_array) + # print(sol.x) + + # print(error_pred_array.sum()) + # print("xxxxx") + # print(error_pred_array) + + + fig, ax = plt.subplots() + # 在生成的坐标系下画折线图 + ax.plot(error_pred_array, linewidth=1) + + + + # 显示图形 + plt.show() + + + # print(i) + # print("rul_pred_array") + # print(list(rul_pred_array)) + # print("true_out_array") + # print(list(true_out_array)) + # print("error_pred_array") + # print(list(error_pred_array)) + + rul_pred_array_list.append(rul_pred_array) + true_out_array_list.append(true_out_array) + error_pred_array_list.append(error_pred_array) + rul_pred_array=np.mean(rul_pred_array_list,axis=0) + true_out_array=np.mean(true_out_array_list,axis=0) + error_pred_array=np.mean(error_pred_array_list,axis=0) + + + print(i) + print("rul_pred_array") + print(list(rul_pred_array)) + print("true_out_array") + print(list(true_out_array)) + print("error_pred_array") + print(list(error_pred_array)) + + + diff --git a/code/data_read/read_mat_for_IGBT.py b/code/data_read/read_mat_for_IGBT.py new file mode 100644 index 0000000..8169ef6 --- /dev/null +++ b/code/data_read/read_mat_for_IGBT.py @@ -0,0 +1,161 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Mar 14 15:25:26 2023 + +@author: Administrator +""" + +import numpy as np + +import scipy as sp + +import math + +from numpy import matmul as mm +from math import sqrt,pi,log, exp + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + +from scipy.stats import norm + + +import scipy.io as scio + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 2\Device2 1.mat' +# matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# x=matdata["measurement"][0][0][1][0][0][2][0][0][4][0] + +# plt.plot(range(0,len(x),10000),x[range(0,len(x),10000)]) +# plt.show() + + + +invaribale_index=3 #########dtype=[('dt', 'O'), ('gateSignalVoltage', 'O'), ('gateEmitterVoltage', 'O'), ('collectorEmitterVoltage', 'O'), ('collectorEmitterCurrentSignal', 'O')]), + + + + + + + + +path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 2\Device2 1.mat' +matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +Vces_list=[] + +for i in range(len(matdata["measurement"][0][0][1][0])): + + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) + Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +print(Vces_list) + +plt.plot(range(len(Vces_list)),Vces_list) +plt.show() + + + + + +path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 3\Device3 1.mat' +matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +Vces_list=[] + +for i in range(len(matdata["measurement"][0][0][1][0])): + + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) + Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +print(Vces_list) + +plt.plot(range(len(Vces_list)),Vces_list) +plt.show() + + + + +path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 4\Device4 1.mat' +matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +Vces_list=[] + +for i in range(len(matdata["measurement"][0][0][1][0])): + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) + Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +print(Vces_list) + +plt.plot(range(len(Vces_list)),Vces_list) +plt.show() + + + + + +path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 5\Device5 1.mat' +matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +Vces_list=[] + +for i in range(len(matdata["measurement"][0][0][1][0])): + + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) + Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + +print(Vces_list) + +plt.plot(range(len(Vces_list)),Vces_list) +plt.show() + + + + + +# epoch_index=6 + + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 2\Device2 1.mat' +# matdata = scio.loadmat(path) +# # print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# # x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# x=matdata["measurement"][0][0][1][0][epoch_index][2][0][0][invaribale_index][0] + +# print(x) +# plt.plot(range(0,len(x),10000),x[range(0,len(x),10000)]) +# plt.show() + diff --git a/code/data_read/test.py b/code/data_read/test.py new file mode 100644 index 0000000..232838e --- /dev/null +++ b/code/data_read/test.py @@ -0,0 +1,170 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Mar 14 17:20:51 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Tue Mar 14 15:25:26 2023 + +@author: Administrator +""" + +import numpy as np + +import scipy as sp + +import math + +from numpy import matmul as mm +from math import sqrt,pi,log, exp + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + +from scipy.stats import norm + + +import scipy.io as scio + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 2\Device2 1.mat' +# matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# x=matdata["measurement"][0][0][1][0][0][2][0][0][4][0] + +# plt.plot(range(0,len(x),10000),x[range(0,len(x),10000)]) +# plt.show() + + + +invaribale_index=3 #########dtype=[('dt', 'O'), ('gateSignalVoltage', 'O'), ('gateEmitterVoltage', 'O'), ('collectorEmitterVoltage', 'O'), ('collectorEmitterCurrentSignal', 'O')]), + + + + + + + + +path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 2\Device2 1.mat' +matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +Vces_list=[] + +for i in range(len(matdata["measurement"][0][0][1][0])): + + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) + Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +print(Vces_list) + +plt.plot(range(len(Vces_list)),Vces_list) +plt.show() + + + + + +path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 3\Device3 1.mat' +matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +Vces_list=[] + +for i in range(len(matdata["measurement"][0][0][1][0])): + + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) + Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +print(Vces_list) +# print() + +plt.plot(range(len(Vces_list)),Vces_list) +plt.show() + + + + +path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 4\Device4 1.mat' +matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +Vces_list=[] + +for i in range(len(matdata["measurement"][0][0][1][0])): + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) + Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +print(Vces_list) + +plt.plot(range(len(Vces_list)),Vces_list) +plt.show() + + + + + +path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 5\Device5 1.mat' +matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +Vces_list=[] + +for i in range(len(matdata["measurement"][0][0][1][0])): + + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) + Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) + # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +# print(x) + +plt.plot(range(len(Vces_list)),Vces_list) +plt.show() + + + + + +# epoch_index=9 + + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 2\Device2 1.mat' +# matdata = scio.loadmat(path) +# # print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# # x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# x=matdata["measurement"][0][0][1][0][epoch_index][2][0][0][invaribale_index][0] + +# print(x) +# plt.plot(range(0,len(x),10000),x[range(0,len(x),10000)]) +# plt.show() + diff --git a/code/data_read/test_for_batarry.py b/code/data_read/test_for_batarry.py new file mode 100644 index 0000000..89f3d03 --- /dev/null +++ b/code/data_read/test_for_batarry.py @@ -0,0 +1,248 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Mar 14 20:18:57 2023 + +@author: Administrator +""" + +# -*- coding: utf-8 -*- +""" +Created on Tue Mar 14 15:25:26 2023 + +@author: Administrator +""" + +import numpy as np + +import scipy as sp + +import math + +from numpy import matmul as mm +from math import sqrt,pi,log, exp + +import xlrd + +import matplotlib.pyplot as plt + +import numpy as np + +from scipy.optimize import minimize, rosen, rosen_der + +from scipy.stats import linregress + +from scipy.stats import norm + + +import scipy.io as scio + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 2\Device2 1.mat' +# matdata = scio.loadmat(path) +# print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# x=matdata["measurement"][0][0][1][0][0][2][0][0][4][0] + +# plt.plot(range(0,len(x),10000),x[range(0,len(x),10000)]) +# plt.show() + + + +invaribale_index=3 #########dtype=[('dt', 'O'), ('gateSignalVoltage', 'O'), ('gateEmitterVoltage', 'O'), ('collectorEmitterVoltage', 'O'), ('collectorEmitterCurrentSignal', 'O')]), + + + + + +###########feng tian + + +path = r'F:\桌面11.17\project\RUL_guassion\handled_dataset\fengtian\training.mat' + +matdata = scio.loadmat(path) + +x=matdata["training"] +plt.plot(range(len(x)),x) +plt.show() + + +path = r'F:\桌面11.17\project\RUL_guassion\handled_dataset\fengtian\test.mat' + +matdata = scio.loadmat(path) + +x=matdata["test"] +plt.plot(range(len(x)),x) +plt.show() + + + + + + + + + + + + + + + +######### nasa + + + + + +path = r'F:\桌面11.17\project\RUL_guassion\handled_dataset\nasa\B0005_2.mat' + +matdata = scio.loadmat(path) + +x=matdata["B0005_2"][0] +plt.plot(range(len(x)),x) +# plt.show() + +print(x) + + +path = r'F:\桌面11.17\project\RUL_guassion\handled_dataset\nasa\B0006_2.mat' + +matdata = scio.loadmat(path) + +x=matdata["B0006_2"][0] +plt.plot(range(len(x)),x) +# plt.show() + +print(x) + + +path = r'F:\桌面11.17\project\RUL_guassion\handled_dataset\nasa\B0007_2.mat' + +matdata = scio.loadmat(path) + +x=matdata["B0007_2"][0] +plt.plot(range(len(x)),x) +# plt.show() +print(x) + + + +path = r'F:\桌面11.17\project\RUL_guassion\handled_dataset\nasa\B0018_2.mat' + +matdata = scio.loadmat(path) + +x=matdata["B0018_2"][0] +plt.plot(range(len(x)),x) +plt.show() + + + + +# # print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# Vces_list=[] + +# for i in range(len(matdata["measurement"][0][0][1][0])): + +# # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) +# Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) +# # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +# # print(x) + +# plt.plot(range(len(Vces_list)),Vces_list) +# plt.show() + + + + + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 3\Device3 1.mat' +# matdata = scio.loadmat(path) +# # print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# Vces_list=[] + +# for i in range(len(matdata["measurement"][0][0][1][0])): + +# # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) +# Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) +# # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +# # print(x) + +# plt.plot(range(len(Vces_list)),Vces_list) +# plt.show() + + + + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 4\Device4 1.mat' +# matdata = scio.loadmat(path) +# # print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# Vces_list=[] + +# for i in range(len(matdata["measurement"][0][0][1][0])): +# # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) +# Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) +# # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +# # print(x) + +# plt.plot(range(len(Vces_list)),Vces_list) +# plt.show() + + + + + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 5\Device5 1.mat' +# matdata = scio.loadmat(path) +# # print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# Vces_list=[] + +# for i in range(len(matdata["measurement"][0][0][1][0])): + +# # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][110000]) +# Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][-1]) +# # Vces_list.append(matdata["measurement"][0][0][1][0][i][2][0][0][invaribale_index][0][50000]) + + +# # print(x) + +# plt.plot(range(len(Vces_list)),Vces_list) +# plt.show() + + + + + +# epoch_index=6 + + +# path = r'F:\桌面11.17\project\RUL_with_highly_small_sample\dataset\IGBTAgingData_04022009\Data\Thermal Overstress Aging with Square Signal at gate and SMU data\Aging Data\Device 2\Device2 1.mat' +# matdata = scio.loadmat(path) +# # print(matdata["measurement"][0][0][1][0][0][2][0][0][4]) +# # x=matdata["measurement"][0][0][1][0][0][2][0][0][invaribale_index][0] + +# x=matdata["measurement"][0][0][1][0][epoch_index][2][0][0][invaribale_index][0] + +# print(x) +# plt.plot(range(0,len(x),10000),x[range(0,len(x),10000)]) +# plt.show() + diff --git a/code/desktop.ini b/code/desktop.ini new file mode 100644 index 0000000..84caab7 --- /dev/null +++ b/code/desktop.ini @@ -0,0 +1,2 @@ +[.ShellClassInfo] +IconResource=C:\Users\Administrator\AppData\Roaming\baidu\BaiduNetdisk\autobackup.ico,0 diff --git a/dataset/CACLE/CS2_35_cap.xlsx b/dataset/CACLE/CS2_35_cap.xlsx new file mode 100644 index 0000000..ef566a4 Binary files /dev/null and b/dataset/CACLE/CS2_35_cap.xlsx differ diff --git a/dataset/CACLE/CS2_35_cap_dropOutlier.xlsx b/dataset/CACLE/CS2_35_cap_dropOutlier.xlsx new file mode 100644 index 0000000..67c61c3 Binary files /dev/null and b/dataset/CACLE/CS2_35_cap_dropOutlier.xlsx differ diff --git a/dataset/CACLE/CS2_36_cap.xlsx b/dataset/CACLE/CS2_36_cap.xlsx new file mode 100644 index 0000000..7a927aa Binary files /dev/null and b/dataset/CACLE/CS2_36_cap.xlsx differ diff --git a/dataset/CACLE/CS2_36_cap_dropOutlier.xlsx b/dataset/CACLE/CS2_36_cap_dropOutlier.xlsx new file mode 100644 index 0000000..5c6dd60 Binary files /dev/null and b/dataset/CACLE/CS2_36_cap_dropOutlier.xlsx differ diff --git a/dataset/CACLE/CS2_37_cap.xlsx b/dataset/CACLE/CS2_37_cap.xlsx new file mode 100644 index 0000000..7073aaa Binary files /dev/null and b/dataset/CACLE/CS2_37_cap.xlsx differ diff --git a/dataset/CACLE/CS2_37_cap_dropOutlier.xlsx b/dataset/CACLE/CS2_37_cap_dropOutlier.xlsx new file mode 100644 index 0000000..6397cb5 Binary files /dev/null and b/dataset/CACLE/CS2_37_cap_dropOutlier.xlsx differ diff --git a/dataset/CACLE/CS2_38_cap.xlsx b/dataset/CACLE/CS2_38_cap.xlsx new file mode 100644 index 0000000..ee08727 Binary files /dev/null and b/dataset/CACLE/CS2_38_cap.xlsx differ diff --git a/dataset/CACLE/CS2_38_cap_dropOutlier.xlsx b/dataset/CACLE/CS2_38_cap_dropOutlier.xlsx new file mode 100644 index 0000000..044961a Binary files /dev/null and b/dataset/CACLE/CS2_38_cap_dropOutlier.xlsx differ diff --git a/dataset/IGBTAgingData_04022009/Readme.doc b/dataset/IGBTAgingData_04022009/Readme.doc new file mode 100644 index 0000000..217c35a Binary files /dev/null and b/dataset/IGBTAgingData_04022009/Readme.doc differ diff --git a/dataset/IGBTAgingData_04022009/Sonnenfeld_Goebel_Celaya.pdf b/dataset/IGBTAgingData_04022009/Sonnenfeld_Goebel_Celaya.pdf new file mode 100644 index 0000000..1f565f6 Binary files /dev/null and b/dataset/IGBTAgingData_04022009/Sonnenfeld_Goebel_Celaya.pdf differ diff --git a/dataset/nasa/B0005_2.mat b/dataset/nasa/B0005_2.mat new file mode 100644 index 0000000..2262432 Binary files /dev/null and b/dataset/nasa/B0005_2.mat differ diff --git a/dataset/nasa/B0006_2.mat b/dataset/nasa/B0006_2.mat new file mode 100644 index 0000000..10c18b6 Binary files /dev/null and b/dataset/nasa/B0006_2.mat differ diff --git a/dataset/nasa/B0007_2.mat b/dataset/nasa/B0007_2.mat new file mode 100644 index 0000000..1dff18c Binary files /dev/null and b/dataset/nasa/B0007_2.mat differ diff --git a/dataset/nasa/B0018_2.mat b/dataset/nasa/B0018_2.mat new file mode 100644 index 0000000..4bf7914 Binary files /dev/null and b/dataset/nasa/B0018_2.mat differ diff --git a/dataset/xiandao/c1.txt b/dataset/xiandao/c1.txt new file mode 100644 index 0000000..db924dc --- /dev/null +++ b/dataset/xiandao/c1.txt @@ -0,0 +1,315 @@ +39.6435188 +41.73550651 +43.70386749 +45.59752512 +47.44376057 +49.22414953 +50.94063898 +52.59512744 +54.18946618 +55.72546025 +57.20486968 +58.62941047 +60.00075568 +61.32053643 +62.59034292 +63.81172539 +64.98619508 +66.11522516 +67.20025165 +68.24267429 +69.24385741 +70.2051308 +71.12779051 +72.01309967 +72.86228928 +73.67655898 +74.4570778 +75.20507849 +75.94243447 +76.66800439 +77.38074463 +78.07970525 +78.76402602 +79.43293254 +80.08573257 +80.72181228 +81.3406328 +81.9417267 +82.52469474 +83.08920252 +83.63497739 +84.16180538 +84.66952821 +85.15804041 +85.62728657 +86.07725857 +86.50799299 +86.91956854 +87.31210365 +87.68575403 +88.04071039 +88.37719619 +88.69546552 +88.99580098 +89.27851166 +89.54393124 +89.79241606 +90.02434336 +90.24010948 +90.44012824 +90.62482925 +90.79465641 +90.95006638 +91.09152714 +91.21951663 +91.33452138 +91.43703525 +91.52755821 +91.6065952 +91.67465492 +91.73224887 +91.77989023 +91.81809293 +91.84737073 +91.86823627 +91.88120029 +91.88688229 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.88839744 +91.99348548 +92.12454651 +92.25519913 +92.38528194 +92.51464058 +92.64312776 +92.77060337 +92.89693457 +93.02199582 +93.14566892 +93.26784304 +93.38841476 +93.50728797 +93.62437397 +93.73959135 +93.85286598 +93.96413095 +94.0733265 +94.18039996 +94.28530563 +94.3880047 +94.48846517 +94.58666168 +94.68257544 +94.77619407 +94.87901865 +95.03217647 +95.18676599 +95.34278076 +95.50021455 +95.65906133 +95.81931527 +95.98097074 +96.14402231 +96.3084647 +96.49096621 +96.71010318 +96.93286811 +97.15923479 +97.38917506 +97.62265881 +97.85965413 +98.10012733 +98.34404302 +98.59136424 +98.84205245 +99.09606759 +99.35336831 +99.61391177 +99.87765393 +100.1445496 +100.4145523 +100.6876147 +100.9636882 +101.2427235 +101.5246703 +101.8094774 +102.0970931 +102.3874649 +102.6805395 +102.9762632 +103.2745819 +103.5754409 +103.8787851 +104.1845593 +104.4927078 +104.8031748 +105.1159044 +105.4308406 +105.7479272 +106.0671083 +106.3883279 +106.7115303 +107.0366596 +107.3636608 +107.6924786 +108.0230583 +108.3553457 +108.6892868 +109.0248284 +109.3619176 +109.7005022 +110.0405307 +110.3819523 +110.7247168 +111.0687749 +111.4140781 +111.7605789 +112.1082306 +112.4569874 +112.8068047 +113.1576388 +113.5094471 +113.8621881 +114.2158217 +114.5703086 +114.9256111 +115.2816925 +115.6385177 +115.9960525 +116.3542646 +116.7131227 +117.072597 +117.4326594 +117.793283 +118.1544425 +118.5161143 +118.8782761 +119.2409074 +119.6039892 +119.9675041 +120.3314367 +120.6957727 +121.0604999 +121.4256078 +121.7910874 +122.1569315 +122.5231349 +122.8896939 +123.2566067 +123.6238731 +123.9914949 +124.3594757 +124.7278208 +125.0965374 +125.4656343 +125.8351225 +126.2050145 +126.5753248 +126.9460695 +127.3172667 +127.6889364 +128.0611002 +128.4337816 +128.8070058 +129.1807998 +129.5551926 +129.9302146 +130.3058983 +130.6822776 +131.0593884 +131.4372681 +131.8159558 +132.1954926 +132.5759206 +132.9572842 +133.3396289 +133.723002 +134.1074524 +134.4930303 +134.8797876 +135.2677775 +135.6570549 +136.0476757 +136.4396975 +136.8331792 +137.2281807 +137.6247635 +138.0229903 +138.4229246 +138.8246317 +139.2281774 +139.6336288 +140.0410542 +140.4505224 +140.8621036 +141.2758687 +141.6918894 +142.1102381 +142.5309883 +142.9542136 +143.3799888 +143.808389 +144.2394899 +144.6733675 +145.1100985 +145.5497597 +145.9924284 +146.4381821 +146.8870983 +147.3392549 +147.7947297 +148.2536005 +148.7159452 +149.1818414 +149.6513666 +150.124598 +150.6016127 +151.0824871 +151.5672974 +152.0561191 +152.5490275 +153.0460967 +153.5474006 +154.0530121 +154.5630033 +155.0774454 +155.5964086 +156.119962 +156.6481737 +157.1811105 +157.7188382 +158.2614209 +158.8089216 +159.3614017 +159.9189212 +160.4815383 +161.0493096 +161.6222903 +162.2005332 +162.7840897 +163.373009 +163.9673384 +164.5671231 +165.1724063 diff --git a/dataset/xiandao/c1_average.xlsx b/dataset/xiandao/c1_average.xlsx new file mode 100644 index 0000000..d54d4b4 Binary files /dev/null and b/dataset/xiandao/c1_average.xlsx differ diff --git a/dataset/xiandao/c1_wear.csv b/dataset/xiandao/c1_wear.csv new file mode 100644 index 0000000..2d7e3e4 --- /dev/null +++ b/dataset/xiandao/c1_wear.csv @@ -0,0 +1,316 @@ +cut,flute_1,flute_2,flute_3, +1,32.31711361,48.89261732,37.72082548,39.6435188 +2,37.914879,49.57081504,37.72082548,41.73550651 +3,43.08790971,50.30286727,37.72082548,43.70386749 +4,47.8590723,51.08365203,37.84985103,45.59752512 +5,52.25032922,51.90828793,38.17266456,47.44376057 +6,56.28276562,52.77212655,38.61755643,49.22414953 +7,59.97661561,53.6707451,39.17455623,50.94063898 +8,63.3512879,54.5999392,39.83415523,52.59512744 +9,66.4253909,55.55571585,40.58729178,54.18946618 +10,69.21675719,56.53428648,41.42533708,55.72546025 +11,71.74246752,57.53206029,42.34008123,57.20486968 +12,74.01887416,58.54563763,43.32371962,58.62941047 +13,76.06162381,59.57180359,44.36883963,60.00075568 +14,77.88567991,60.60752172,45.46840765,61.32053643 +15,79.50534445,61.64992794,46.61575637,62.59034292 +16,80.93427925,62.69632451,47.8045724,63.81172539 +17,82.18552678,63.74417426,49.0288842,64.98619508 +18,83.27153045,64.79109482,50.28305022,66.11522516 +19,84.20415441,65.83485314,51.56174741,67.20025165 +20,84.99470288,66.87336002,52.85995997,68.24267429 +21,85.653939,67.90466485,54.17296838,69.24385741 +22,86.19210327,68.92695045,55.49633868,70.2051308 +23,86.61893145,69.93852803,56.82591204,71.12779051 +24,86.94367205,70.93783235,58.15779461,72.01309967 +25,87.17510345,71.92341685,59.48834755,72.86228928 +26,87.32155046,72.89394911,60.81417738,73.67655898 +27,87.39090058,73.84820624,62.13212659,74.4570778 +28,87.39090058,74.78507049,63.43926441,75.20507849 +29,87.39090058,75.70352498,64.73287786,75.94243447 +30,87.39090058,76.6026495,66.0104631,76.66800439 +31,87.39090058,77.48161641,67.26971691,77.38074463 +32,87.39090058,78.33968677,68.50852841,78.07970525 +33,87.39090058,79.17620637,69.72497111,78.76402602 +34,87.39090058,79.99060207,70.91729498,79.43293254 +35,87.39090058,80.78237816,72.08391897,80.08573257 +36,87.39090058,81.55111275,73.22342351,80.72181228 +37,87.39090058,82.2964544,74.33454341,81.3406328 +38,87.39090058,83.01811874,75.41616079,81.9417267 +39,87.39090058,83.71588526,76.46729838,82.52469474 +40,87.39090058,84.38959411,77.48711287,83.08920252 +41,87.39090058,85.03914309,78.47488851,83.63497739 +42,87.39090058,85.66448465,79.43003091,84.16180538 +43,87.39090058,86.26562303,80.35206101,84.66952821 +44,87.39090058,86.84261145,81.24060921,85.15804041 +45,87.39090058,87.39554943,82.09540971,85.62728657 +46,87.39090058,87.92458016,82.91629497,86.07725857 +47,87.39090058,88.42988794,83.70319044,86.50799299 +48,87.39090058,88.91169574,84.45610931,86.91956854 +49,87.39090058,89.37026282,85.17514756,87.31210365 +50,87.39090058,89.80588243,85.86047909,87.68575403 +51,87.39090058,90.21887955,86.51235104,88.04071039 +52,87.39090058,90.60960878,87.13107922,88.37719619 +53,87.39090058,90.97845225,87.71704374,88.69546552 +54,87.39090058,91.32581757,88.27068479,88.99580098 +55,87.39090058,91.65213593,88.79249847,89.27851166 +56,87.39090058,91.95786023,89.2830329,89.54393124 +57,87.39090058,92.24346325,89.74288435,89.79241606 +58,87.39090058,92.50943591,90.17269359,90.02434336 +59,87.39090058,92.7562856,90.57314227,90.24010948 +60,87.39090058,92.98453457,90.94494956,90.44012824 +61,87.39090058,93.19471836,91.2888688,90.62482925 +62,87.39090058,93.38738431,91.60568433,90.79465641 +63,87.39090058,93.56309014,91.89620842,90.95006638 +64,87.39090058,93.72240252,92.16127833,91.09152714 +65,87.39090058,93.86589581,92.40175351,91.21951663 +66,87.39090058,93.99415074,92.61851282,91.33452138 +67,87.39090058,94.10775318,92.81245198,91.43703525 +68,87.39090058,94.20729304,92.98448102,91.52755821 +69,87.39090058,94.29336308,93.13552193,91.6065952 +70,87.39090058,94.36655788,93.26650631,91.67465492 +71,87.39090058,94.42747281,93.37837323,91.73224887 +72,87.39090058,94.47670304,93.47206707,91.77989023 +73,87.39090058,94.51484266,93.54853556,91.81809293 +74,87.39090058,94.54248373,93.60872787,91.84737073 +75,87.39090058,94.5602155,93.65359272,91.86823627 +76,87.39090058,94.56862356,93.68407674,91.88120029 +77,87.39090058,94.56862356,93.70112274,91.88688229 +78,87.39090058,94.56862356,93.70566818,91.88839744 +79,87.39090058,94.56862356,93.70566818,91.88839744 +80,87.39090058,94.56862356,93.70566818,91.88839744 +81,87.39090058,94.56862356,93.70566818,91.88839744 +82,87.39090058,94.56862356,93.70566818,91.88839744 +83,87.39090058,94.56862356,93.70566818,91.88839744 +84,87.39090058,94.56862356,93.70566818,91.88839744 +85,87.39090058,94.56862356,93.70566818,91.88839744 +86,87.39090058,94.56862356,93.70566818,91.88839744 +87,87.39090058,94.56862356,93.70566818,91.88839744 +88,87.39090058,94.56862356,93.70566818,91.88839744 +89,87.39090058,94.56862356,93.70566818,91.88839744 +90,87.39090058,94.56862356,93.70566818,91.88839744 +91,87.39090058,94.56862356,93.70566818,91.88839744 +92,87.39090058,94.56862356,93.70566818,91.88839744 +93,87.39090058,94.56862356,93.70566818,91.88839744 +94,87.39090058,94.56862356,93.70566818,91.88839744 +95,87.39090058,94.56862356,93.70566818,91.88839744 +96,87.39090058,94.56862356,93.70566818,91.88839744 +97,87.39090058,94.56862356,93.70566818,91.88839744 +98,87.39090058,94.56862356,93.70566818,91.88839744 +99,87.39090058,94.56862356,93.70566818,91.88839744 +100,87.39090058,94.56862356,93.70566818,91.88839744 +101,87.7061647,94.56862356,93.70566818,91.99348548 +102,88.0993478,94.56862356,93.70566818,92.12454651 +103,88.49130564,94.56862356,93.70566818,92.25519913 +104,88.88155409,94.56862356,93.70566818,92.38528194 +105,89.26963001,94.56862356,93.70566818,92.51464058 +106,89.65509154,94.56862356,93.70566818,92.64312776 +107,90.03751838,94.56862356,93.70566818,92.77060337 +108,90.41651198,94.56862356,93.70566818,92.89693457 +109,90.79169571,94.56862356,93.70566818,93.02199582 +110,91.16271501,94.56862356,93.70566818,93.14566892 +111,91.52923739,94.56862356,93.70566818,93.26784304 +112,91.89095253,94.56862356,93.70566818,93.38841476 +113,92.24757218,94.56862356,93.70566818,93.50728797 +114,92.59883018,94.56862356,93.70566818,93.62437397 +115,92.94448231,94.56862356,93.70566818,93.73959135 +116,93.2843062,94.56862356,93.70566818,93.85286598 +117,93.61810111,94.56862356,93.70566818,93.96413095 +118,93.94568777,94.56862356,93.70566818,94.0733265 +119,94.26690815,94.56862356,93.70566818,94.18039996 +120,94.58162515,94.56862356,93.70566818,94.28530563 +121,94.88972237,94.56862356,93.70566818,94.3880047 +122,95.19110376,94.56862356,93.70566818,94.48846517 +123,95.48569329,94.56862356,93.70566818,94.58666168 +124,95.77343457,94.56862356,93.70566818,94.68257544 +125,96.05429047,94.56862356,93.70566818,94.77619407 +126,96.32824273,94.56862356,93.74018966,94.87901865 +127,96.59529149,94.56862356,93.93261436,95.03217647 +128,96.85545491,94.56862356,94.13621951,95.18676599 +129,97.10876863,94.56862356,94.3509501,95.34278076 +130,97.35528535,94.56862356,94.57673474,95.50021455 +131,97.59507432,94.56862356,94.8134861,95.65906133 +132,97.82822082,94.56862356,95.06110142,95.81931527 +133,98.05482567,94.56862356,95.31946299,95.98097074 +134,98.27500469,94.56862356,95.58843867,96.14402231 +135,98.48888816,94.56862356,95.86788239,96.3084647 +136,98.69662026,94.61864372,96.15763466,96.49096621 +137,98.89835857,94.77442788,96.45752308,96.71010318 +138,99.09427345,94.936968,96.76736287,96.93286811 +139,99.2845475,95.1061995,97.08695738,97.15923479 +140,99.469375,95.28205156,97.41609862,97.38917506 +141,99.64896132,95.46444735,97.75456776,97.62265881 +142,99.82352237,95.65330429,98.10213572,97.85965413 +143,99.99328397,95.84853439,98.45856362,98.10012733 +144,100.1584813,96.05004442,98.82360334,98.34404302 +145,100.3193584,96.25773627,99.19699805,98.59136424 +146,100.4761675,96.47150713,99.57848272,98.84205245 +147,100.6291683,96.69124982,99.96778466,99.09606759 +148,100.7786279,96.91685304,100.364624,99.35336831 +149,100.9248194,97.1482016,100.7687143,99.61391177 +150,101.0680222,97.3851767,101.1797629,99.87765393 +151,101.208521,97.62765621,101.5974715,100.1445496 +152,101.3466052,97.87551489,102.0215369,100.4145523 +153,101.4825683,98.12862466,102.4516511,100.6876147 +154,101.6167078,98.38685484,102.887502,100.9636882 +155,101.7493242,98.65007241,103.328774,101.2427235 +156,101.8807204,98.91814226,103.7751482,101.5246703 +157,102.0112017,99.1909274,104.2263032,101.8094774 +158,102.1410748,99.46828924,104.6819154,102.0970931 +159,102.2706475,99.75008778,105.1416593,102.3874649 +160,102.400228,100.0361819,105.6052085,102.6805395 +161,102.5301247,100.3264295,106.0722354,102.9762632 +162,102.6606455,100.6206878,106.5424124,103.2745819 +163,102.7920973,100.9188136,107.0154117,103.5754409 +164,102.9247859,101.2206632,107.4909062,103.8787851 +165,103.0590149,101.5260932,107.9685697,104.1845593 +166,103.1950858,101.8349601,108.4480774,104.4927078 +167,103.3332975,102.1471208,108.9291061,104.8031748 +168,103.4739456,102.4624327,109.4113349,105.1159044 +169,103.6173222,102.7807541,109.8944454,105.4308406 +170,103.7637155,103.101944,110.3781221,105.7479272 +171,103.9134094,103.4258627,110.8620528,106.0671083 +172,104.0666829,103.7523718,111.3459291,106.3883279 +173,104.2238103,104.0813342,111.8294463,106.7115303 +174,104.3850601,104.4126146,112.3123042,107.0366596 +175,104.5506955,104.7460794,112.7942074,107.3636608 +176,104.7209733,105.0815971,113.2748654,107.6924786 +177,104.896144,105.4190381,113.7539929,108.0230583 +178,105.0764515,105.7582753,114.2313103,108.3553457 +179,105.2621329,106.0991838,114.7065438,108.6892868 +180,105.4534178,106.4416414,115.179426,109.0248284 +181,105.6505285,106.7855285,115.6496958,109.3619176 +182,105.8536796,107.1307284,116.1170987,109.7005022 +183,106.0630776,107.4771272,116.5813874,110.0405307 +184,106.2789212,107.8246142,117.0423215,110.3819523 +185,106.5014004,108.1730817,117.4996682,110.7247168 +186,106.7306968,108.5224254,117.9532024,111.0687749 +187,106.9669833,108.8725444,118.4027067,111.4140781 +188,107.210424,109.2233411,118.8479717,111.7605789 +189,107.4611738,109.5747216,119.2887964,112.1082306 +190,107.7193786,109.9265956,119.724988,112.4569874 +191,107.985175,110.2788767,120.1563624,112.8068047 +192,108.2586902,110.631482,120.5827442,113.1576388 +193,108.5400419,110.9843326,121.0039667,113.5094471 +194,108.8293382,111.3373537,121.4198724,113.8621881 +195,109.1266779,111.6904743,121.8303128,114.2158217 +196,109.4321497,112.0436276,122.2351485,114.5703086 +197,109.7458328,112.3967508,122.6342497,114.9256111 +198,110.0677966,112.7497853,123.0274957,115.2816925 +199,110.3981009,113.1026766,123.4147755,115.6385177 +200,110.7367954,113.4553746,123.7959876,115.9960525 +201,111.0839203,113.8078334,124.1710401,116.3542646 +202,111.4395061,114.1600113,124.5398507,116.7131227 +203,111.8035733,114.5118709,124.9023469,117.072597 +204,112.176133,114.8633792,125.2584659,117.4326594 +205,112.5571865,115.2145076,125.6081548,117.793283 +206,112.9467257,115.5652317,125.9513701,118.1544425 +207,113.344733,115.9155313,126.2880785,118.5161143 +208,113.7511812,116.2653909,126.6182561,118.8782761 +209,114.1660341,116.614799,126.941889,119.2409074 +210,114.5892461,116.9637486,127.2589728,119.6039892 +211,115.0207626,117.3122369,127.5695129,119.9675041 +212,115.4605201,117.6602655,127.8735244,120.3314367 +213,115.9084463,118.00784,128.1710319,120.6957727 +214,116.36446,118.3549704,128.4620693,121.0604999 +215,116.828472,118.701671,128.7466804,121.4256078 +216,117.3003841,119.04796,129.024918,121.7910874 +217,117.7800905,119.3938598,129.2968443,122.1569315 +218,118.2674771,119.7393969,129.5625308,122.5231349 +219,118.7624221,120.0846019,129.8220578,122.8896939 +220,119.2647961,120.4295091,130.0755148,123.2566067 +221,119.7744621,120.774157,130.3230002,123.6238731 +222,120.2912763,121.1185876,130.5646208,123.9914949 +223,120.8150876,121.4628472,130.8004924,124.3594757 +224,121.3457382,121.8069852,131.030739,124.7278208 +225,121.8830639,122.1510551,131.2554931,125.0965374 +226,122.4268941,122.4951138,131.474895,125.4656343 +227,122.9770523,122.8392217,131.6890935,125.8351225 +228,123.5333561,123.1834427,131.8982448,126.2050145 +229,124.0956175,123.5278439,132.1025129,126.5753248 +230,124.6636433,123.8724957,132.3020694,126.9460695 +231,125.2372354,124.2174717,132.4970931,127.3172667 +232,125.8161908,124.5628486,132.6877699,127.6889364 +233,126.4003021,124.908706,132.8742926,128.0611002 +234,126.9893575,125.2551264,133.0568608,128.4337816 +235,127.5831416,125.6021951,133.2356806,128.8070058 +236,128.1814351,125.9500002,133.4109642,129.1807998 +237,128.7840154,126.2986322,133.5829302,129.5551926 +238,129.3906569,126.6481841,133.7518028,129.9302146 +239,130.0011312,126.9987515,133.9178121,130.3058983 +240,130.6152074,127.350432,134.0811934,130.6822776 +241,131.2326523,127.7033255,134.2421873,131.0593884 +242,131.8532309,128.0575339,134.4010394,131.4372681 +243,132.4767066,128.413161,134.5579999,131.8159558 +244,133.1028415,128.7703127,134.7133235,132.1954926 +245,133.7313964,129.1290961,134.8672693,132.5759206 +246,134.3621319,129.4896204,135.0201002,132.9572842 +247,134.9948077,129.851996,135.172083,133.3396289 +248,135.6291837,130.2163346,135.3234878,133.723002 +249,136.2650196,130.5827494,135.4745881,134.1074524 +250,136.902076,130.9513544,135.6256605,134.4930303 +251,137.540114,131.3222648,135.776984,134.8797876 +252,138.1788957,131.6955966,135.9288403,135.2677775 +253,138.8181847,132.0714667,136.0815132,135.6570549 +254,139.4577462,132.4499923,136.2352886,136.0476757 +255,140.0973471,132.8312914,136.390454,136.4396975 +256,140.7367569,133.2154822,136.5472984,136.8331792 +257,141.375747,133.6026833,136.7061117,137.2281807 +258,142.0140922,133.9930132,136.8671851,137.6247635 +259,142.6515699,134.3865908,137.0308101,138.0229903 +260,143.2879608,134.7835344,137.1972787,138.4229246 +261,143.9230495,135.1839625,137.3668831,138.8246317 +262,144.556624,135.5879928,137.5399153,139.2281774 +263,145.1884767,135.995743,137.7166668,139.6336288 +264,145.8184043,136.4073297,137.8974285,140.0410542 +265,146.4462078,136.8228691,138.0824903,140.4505224 +266,147.0716935,137.2424764,138.272141,140.8621036 +267,147.6946724,137.6662659,138.4666678,141.2758687 +268,148.3149609,138.0943508,138.6663564,141.6918894 +269,148.9323811,138.526843,138.8714903,142.1102381 +270,149.5467607,138.9638531,139.082351,142.5309883 +271,150.1579333,139.4054903,139.2992173,142.9542136 +272,150.765739,139.8518621,139.5223654,143.3799888 +273,151.3700239,140.3030746,139.7520686,143.808389 +274,151.970641,140.7592317,139.9885969,144.2394899 +275,152.5674499,141.2204358,140.2322168,144.6733675 +276,153.1603172,141.686787,140.4831912,145.1100985 +277,153.7491167,142.1583834,140.741779,145.5497597 +278,154.3337295,142.6353208,141.008235,145.9924284 +279,154.914044,143.1176927,141.2828095,146.4381821 +280,155.4899564,143.6055902,141.5657483,146.8870983 +281,156.0613707,144.0991016,141.8572923,147.3392549 +282,156.6281987,144.5983129,142.1576774,147.7947297 +283,157.1903603,145.1033072,142.467134,148.2536005 +284,157.7477835,145.6141647,142.7858874,148.7159452 +285,158.3004046,146.1309628,143.1141568,149.1818414 +286,158.8481684,146.6537756,143.4521558,149.6513666 +287,159.3910281,147.1826743,143.8000917,150.124598 +288,159.9289454,147.717727,144.1581657,150.6016127 +289,160.4618907,148.2589982,144.5265724,151.0824871 +290,160.9898432,148.8065493,144.9054997,151.5672974 +291,161.5127908,149.3604379,145.2951287,152.0561191 +292,162.0307303,149.9207185,145.6956336,152.5490275 +293,162.5436673,150.4874416,146.1071812,153.0460967 +294,163.0516165,151.0606542,146.5299311,153.5474006 +295,163.5546014,151.6403995,146.9640355,154.0530121 +296,164.0526545,152.2267169,147.4096385,154.5630033 +297,164.5458173,152.8196419,147.866877,155.0774454 +298,165.0341403,153.419206,148.3358794,155.5964086 +299,165.5176828,154.0254367,148.8167664,156.119962 +300,165.9965134,154.6383575,149.3096502,156.6481737 +301,166.4707092,155.2579876,149.8146348,157.1811105 +302,166.9403565,155.8843423,150.3318158,157.7188382 +303,167.4055503,156.5174323,150.8612801,158.2614209 +304,167.8663945,157.1572644,151.4031059,158.8089216 +305,168.3230015,157.8038408,151.9573629,159.3614017 +306,168.7754925,158.4571595,152.5241115,159.9189212 +307,169.2239972,159.1172142,153.1034034,160.4815383 +308,169.6686538,159.7839938,153.6952813,161.0493096 +309,170.109609,160.4574833,154.2997786,161.6222903 +310,170.5470173,161.1376626,154.9169196,162.2005332 +311,170.9810419,161.8245077,155.5467195,162.7840897 +312,171.4118535,162.5179895,156.1891839,163.373009 +313,171.839631,163.2180749,156.8443093,163.9673384 +314,172.2645609,163.9247258,157.5120827,164.5671231 +315,172.6868372,164.6378999,158.1924817,165.1724063 diff --git a/dataset/xiandao/c4.txt b/dataset/xiandao/c4.txt new file mode 100644 index 0000000..1862211 --- /dev/null +++ b/dataset/xiandao/c4.txt @@ -0,0 +1,315 @@ +24.21603668 +27.76392576 +31.05812474 +34.11272657 +36.94126062 +39.55670907 +41.97152296 +44.19763785 +46.24648927 +48.12902763 +49.85573305 +51.43662963 +52.88129959 +54.19889697 +55.39816113 +56.48742985 +57.47465218 +58.36740102 +59.17288536 +59.89796229 +60.54914868 +61.13263263 +61.65428459 +62.11966834 +62.53405155 +62.90241619 +63.22946866 +63.51964968 +63.77986482 +64.02124681 +64.24612443 +64.45667649 +64.6549378 +64.84280487 +65.02204165 +65.19428489 +65.36104955 +65.52373394 +65.68362478 +65.84190207 +65.99964387 +66.15783094 +66.31735119 +66.47900406 +66.64350478 +66.81148844 +66.983514 +67.16006816 +67.34156907 +67.52837002 +67.72076293 +67.91898175 +68.12320577 +68.33356283 +68.55013239 +68.77294851 +69.00200277 +69.23724705 +69.47859619 +69.72593064 +69.97909895 +70.23792017 +70.50218623 +70.77166413 +71.04609814 +71.32521189 +71.62235332 +72.01186156 +72.41093197 +72.81906332 +73.23573249 +73.66039698 +74.09249736 +74.53145956 +74.97669714 +75.42761342 +75.88360347 +76.34405616 +76.80835594 +77.27588467 +77.7460233 +78.21815351 +78.69165919 +79.16592799 +79.64035262 +80.11433222 +80.58727357 +81.05859228 +81.52771389 +81.9940749 +82.45712376 +82.91632177 +83.37114395 +83.82107982 +84.26563414 +84.7043276 +85.13669743 +85.562298 +85.98070136 +86.39149766 +86.79429563 +87.18872298 +87.57442667 +87.95107329 +88.31834924 +88.67596103 +89.02363537 +89.3611194 +89.6881807 +90.00460745 +90.3102084 +90.60481293 +90.88827096 +91.16045296 +91.42124983 +91.67057279 +91.90835323 +92.13454258 +92.34911212 +92.55205274 +92.74337473 +92.92310751 +93.0942088 +93.25737267 +93.41259973 +93.55990377 +93.69931161 +93.8308629 +93.95460987 +94.07061711 +94.17896129 +94.27973097 +94.3730263 +94.45895874 +94.53765081 +94.60923579 +94.67537072 +94.73773813 +94.79638462 +94.85136201 +94.90272718 +94.95054198 +94.99487308 +95.03579181 +95.07337407 +95.10770016 +95.13885463 +95.16692615 +95.19200739 +95.21419481 +95.23358857 +95.25029236 +95.26441323 +95.27606148 +95.28535047 +95.29239651 +95.29731865 +95.30023858 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.30128046 +95.33521881 +95.37337294 +95.41511465 +95.55435079 +95.71377564 +95.88296678 +96.06207811 +96.25125625 +96.4506404 +96.6603623 +96.97094911 +97.36193722 +97.76950693 +98.19375769 +98.6347772 +99.09264146 +99.56741468 +100.0591493 +100.567886 +101.0936539 +101.6364702 +102.1963406 +102.7732591 +103.3672081 +103.9781587 +104.6060704 +105.2508912 +105.9125583 +106.5909971 +107.2861225 +107.997838 +108.7260364 +109.4706 +110.2314 +111.0082975 +111.8011431 +112.6097773 +113.4340305 +114.2737233 +115.1286665 +115.9986614 +116.8835001 +117.7829651 +118.6968305 +119.6248611 +120.5668133 +121.5224352 +122.4914666 +123.4736392 +124.4686773 +125.4762972 +126.4962082 +127.5281125 +128.5717052 +129.6266751 +130.6927044 +131.7694691 +132.8566394 +133.9538799 +135.0608497 +136.1772027 +137.3025878 +138.4366496 +139.5790278 +140.7293584 +141.8872733 +143.0524007 +144.2243656 +145.4027897 +146.587292 +147.7774889 +148.9729945 +150.1734206 +151.3783777 +152.5874742 +153.8003175 +155.0165141 +156.2356696 +157.457389 +158.6812774 +159.9069395 +161.1339807 +162.3620068 +163.5906241 +164.8194404 +166.0480645 +167.2761068 +168.5031796 +169.7288971 +170.9528758 +172.1747347 +173.3940956 +174.6105832 +175.8238256 +177.033454 +178.2391036 +179.4404132 +180.6370259 +181.828589 +183.0147543 +184.1951785 +185.3695228 +186.5374541 +187.6986441 +188.8527702 +189.9995156 +191.1385693 +192.2696262 +193.3923874 +194.5065607 +195.6118601 +196.7080065 +197.7947275 +198.8717578 +199.938839 +200.9957205 +202.0421585 +203.0779171 diff --git a/dataset/xiandao/c4_average.xlsx b/dataset/xiandao/c4_average.xlsx new file mode 100644 index 0000000..d54d4b4 Binary files /dev/null and b/dataset/xiandao/c4_average.xlsx differ diff --git a/dataset/xiandao/c4_wear.csv b/dataset/xiandao/c4_wear.csv new file mode 100644 index 0000000..3253258 --- /dev/null +++ b/dataset/xiandao/c4_wear.csv @@ -0,0 +1,316 @@ +cut,flute_1,flute_2,flute_3, +1,31.41635516,19.48369225,21.74806264,24.21603668 +2,34.8927704,23.473047,24.92595987,27.76392576 +3,38.10284657,27.17286849,27.89865916,31.05812474 +4,41.06102301,30.59930868,30.67784802,34.11272657 +5,43.78119133,33.76786983,33.27472071,36.94126062 +6,46.27671037,36.69342355,35.6999933,39.55670907 +7,48.56042098,39.39022937,37.96391852,41.97152296 +8,50.64466037,41.87195302,40.07630017,44.19763785 +9,52.54127629,44.15168423,42.04650728,46.24648927 +10,54.26164088,46.24195416,43.88348786,48.12902763 +11,55.81666418,48.15475251,45.59578247,49.85573305 +12,57.21680745,49.90154413,47.19153732,51.43662963 +13,58.47209617,51.49328539,48.67851721,52.88129959 +14,59.59213275,52.9404401,50.06411807,54.19889697 +15,60.58610902,54.25299511,51.35537927,55.39816113 +16,61.46281844,55.44047554,52.55899557,56.48742985 +17,62.23066801,56.51195964,53.68132888,57.47465218 +18,62.89769001,57.47609342,54.72841962,58.36740102 +19,63.47155339,58.34110474,55.70599795,59.17288536 +20,63.959575,59.1148173,56.61949457,59.89796229 +21,64.36873051,59.80466414,57.4740514,60.54914868 +22,64.70566514,60.41770086,58.27453188,61.13263263 +23,64.9767041,60.96061858,59.02553109,61.65428459 +24,65.1878629,61.43975654,59.73138559,62.11966834 +25,65.34485725,61.86111439,60.39618301,62.53405155 +26,65.45311297,62.23036422,61.02377139,62.90241619 +27,65.51777545,62.55286224,61.6177683,63.22946866 +28,65.54371906,62.83366026,62.18156971,63.51964968 +29,65.54371906,63.07751676,62.71835863,63.77986482 +30,65.54371906,63.28890784,63.23111352,64.02124681 +31,65.54371906,63.47203771,63.72261651,64.24612443 +32,65.54371906,63.6308491,64.19546132,64.45667649 +33,65.54371906,63.76903326,64.65206107,64.6549378 +34,65.54371906,63.89003975,65.09465581,64.84280487 +35,65.54371906,63.99708603,65.52531985,65.02204165 +36,65.54371906,64.09316671,65.9459689,65.19428489 +37,65.54371906,64.18106257,66.35836702,65.36104955 +38,65.54371906,64.26334943,66.76413333,65.52373394 +39,65.54371906,64.34240665,67.16474862,65.68362478 +40,65.54371906,64.42042549,67.56156165,65.84190207 +41,65.54371906,64.49941721,67.95579535,65.99964387 +42,65.54371906,64.58122094,68.34855283,66.15783094 +43,65.54371906,64.66751133,68.74082317,66.31735119 +44,65.54371906,64.75980602,69.1334871,66.47900406 +45,65.54371906,64.85947284,69.52732244,66.64350478 +46,65.54371906,64.96773684,69.92300941,66.81148844 +47,65.54371906,65.08568713,70.32113581,66.983514 +48,65.54371906,65.21428344,70.72220197,67.16006816 +49,65.54371906,65.35436259,71.12662555,67.34156907 +50,65.54371906,65.50664473,71.53474627,67.52837002 +51,65.54371906,65.67173932,71.94683041,67.72076293 +52,65.54371906,65.85015104,72.36307514,67.91898175 +53,65.54371906,66.04228544,72.78361282,68.12320577 +54,65.54371906,66.24845443,73.208515,68.33356283 +55,65.54371906,66.46888163,73.63779647,68.55013239 +56,65.54371906,66.70370749,74.07141897,68.77294851 +57,65.54371906,66.95299431,74.50929495,69.00200277 +58,65.54371906,67.21673103,74.95129106,69.23724705 +59,65.54371906,67.4948379,75.39723162,69.47859619 +60,65.54371906,67.787171,75.84690187,69.72593064 +61,65.54371906,68.09352659,76.3000512,69.97909895 +62,65.54371906,68.41364529,76.75639617,70.23792017 +63,65.54371906,68.74721616,77.21562347,70.50218623 +64,65.54371906,69.0938806,77.67739272,70.77166413 +65,65.54371906,69.45323612,78.14133923,71.04609814 +66,65.54371906,69.82483999,78.60707661,71.32521189 +67,65.58464803,70.20821271,79.07419922,71.62235332 +68,65.89045864,70.60284141,79.54228463,72.01186156 +69,66.21371695,71.00818308,80.01089589,72.41093197 +70,66.55393858,71.42366764,80.47958375,72.81906332 +71,66.9106077,71.84870103,80.94788874,73.23573249 +72,67.28317974,72.28266799,81.41534322,73.66039698 +73,67.67108395,72.72493484,81.88147329,74.09249736 +74,68.07372593,73.17485215,82.34580059,74.53145956 +75,68.49049008,73.63175725,82.8078441,74.97669714 +76,68.92074185,74.09497664,83.26712176,75.42761342 +77,69.36383003,74.56382831,83.72315207,75.88360347 +78,69.8190889,75.03762397,84.17545561,76.34405616 +79,70.28584028,75.51567114,84.6235564,76.80835594 +80,70.76339554,75.99727516,85.06698331,77.27588467 +81,71.25105747,76.48174113,85.50527131,77.7460233 +82,71.74812216,76.9683757,85.93796266,78.21815351 +83,72.25388071,77.45648882,86.36460805,78.69165919 +84,72.76762093,77.94539538,86.78476767,79.16592799 +85,73.28862893,78.43441676,87.19801218,79.64035262 +86,73.81619066,78.92288232,87.60392369,80.11433222 +87,74.3495934,79.41013074,88.00209657,80.58727357 +88,74.88812711,79.89551141,88.39213832,81.05859228 +89,75.4310858,80.37838559,88.77367027,81.52771389 +90,75.97776878,80.8581276,89.14632832,81.9940749 +91,76.52748184,81.33412589,89.50976354,82.45712376 +92,77.07953845,81.80578408,89.86364278,82.91632177 +93,77.6332608,82.27252187,90.20764919,83.37114395 +94,78.18798081,82.73377594,90.54148272,83.82107982 +95,78.74304115,83.18900074,90.86486054,84.26563414 +96,79.29779609,83.63766927,91.17751744,84.7043276 +97,79.85161241,84.07927373,91.47920614,85.13669743 +98,80.40387017,84.51332619,91.76969765,85.562298 +99,80.95396348,84.93935911,92.04878148,85.98070136 +100,81.50130122,85.35692589,92.31626586,86.39149766 +101,82.04530765,85.76560133,92.57197792,86.79429563 +102,82.58542306,86.16498203,92.81576385,87.18872298 +103,83.12110433,86.55468673,93.04748896,87.57442667 +104,83.65182542,86.93435665,93.26703779,87.95107329 +105,84.17707788,87.30365573,93.47431411,88.31834924 +106,84.69637128,87.66227089,93.66924092,88.67596103 +107,85.20923356,88.00991211,93.85176045,89.02363537 +108,85.71521147,88.34631267,94.02183405,89.3611194 +109,86.2138708,88.67122916,94.17944214,89.6881807 +110,86.7047967,88.98444158,94.32458407,90.00460745 +111,87.18759393,89.2857533,94.45727798,90.3102084 +112,87.66188705,89.57499109,94.57756064,90.60481293 +113,88.12732061,89.85200505,94.68548722,90.88827096 +114,88.58355929,90.11666848,94.78113112,91.16045296 +115,89.030288,90.3688778,94.86458369,91.42124983 +116,89.46721198,90.60855238,94.935954,91.67057279 +117,89.89405683,90.83563433,94.99536852,91.90835323 +118,90.31056855,91.05008833,95.04297086,92.13454258 +119,90.71651354,91.25190137,95.07892145,92.34911212 +120,91.11167857,91.44108249,95.10339716,92.55205274 +121,91.4958707,91.61766247,95.11659101,92.74337473 +122,91.86891723,91.78169355,95.11871175,92.92310751 +123,92.23066559,91.93324905,95.11871175,93.0942088 +124,92.5809832,92.07242307,95.11871175,93.25737267 +125,92.91975736,92.19933008,95.11871175,93.41259973 +126,93.24689504,92.31410451,95.11871175,93.55990377 +127,93.5623227,92.41690038,95.11871175,93.69931161 +128,93.86598613,92.50789083,95.11871175,93.8308629 +129,94.15785016,92.58726771,95.11871175,93.95460987 +130,94.43789847,92.6552411,95.11871175,94.07061711 +131,94.70613329,92.71203882,95.11871175,94.17896129 +132,94.96257518,92.75790598,95.11871175,94.27973097 +133,95.20726268,92.79310447,95.11871175,94.3730263 +134,95.44025205,92.81791243,95.11871175,94.45895874 +135,95.66161694,92.83262375,95.11871175,94.53765081 +136,95.87144806,92.83754756,95.11871175,94.60923579 +137,96.06985284,92.83754756,95.11871175,94.67537072 +138,96.25695507,92.83754756,95.11871175,94.73773813 +139,96.43289455,92.83754756,95.11871175,94.79638462 +140,96.59782671,92.83754756,95.11871175,94.85136201 +141,96.75192223,92.83754756,95.11871175,94.90272718 +142,96.89536664,92.83754756,95.11871175,94.95054198 +143,97.02835992,92.83754756,95.11871175,94.99487308 +144,97.15111612,92.83754756,95.11871175,95.03579181 +145,97.26386291,92.83754756,95.11871175,95.07337407 +146,97.36684116,92.83754756,95.11871175,95.10770016 +147,97.46030457,92.83754756,95.11871175,95.13885463 +148,97.54451915,92.83754756,95.11871175,95.16692615 +149,97.61976286,92.83754756,95.11871175,95.19200739 +150,97.68632512,92.83754756,95.11871175,95.21419481 +151,97.7445064,92.83754756,95.11871175,95.23358857 +152,97.79461776,92.83754756,95.11871175,95.25029236 +153,97.83698037,92.83754756,95.11871175,95.26441323 +154,97.87192512,92.83754756,95.11871175,95.27606148 +155,97.89979211,92.83754756,95.11871175,95.28535047 +156,97.92093022,92.83754756,95.11871175,95.29239651 +157,97.93569664,92.83754756,95.11871175,95.29731865 +158,97.94445643,92.83754756,95.11871175,95.30023858 +159,97.94758207,92.83754756,95.11871175,95.30128046 +160,97.94758207,92.83754756,95.11871175,95.30128046 +161,97.94758207,92.83754756,95.11871175,95.30128046 +162,97.94758207,92.83754756,95.11871175,95.30128046 +163,97.94758207,92.83754756,95.11871175,95.30128046 +164,97.94758207,92.83754756,95.11871175,95.30128046 +165,97.94758207,92.83754756,95.11871175,95.30128046 +166,97.94758207,92.83754756,95.11871175,95.30128046 +167,97.94758207,92.83754756,95.11871175,95.30128046 +168,97.94758207,92.83754756,95.11871175,95.30128046 +169,97.94758207,92.83754756,95.11871175,95.30128046 +170,97.94758207,92.83754756,95.11871175,95.30128046 +171,97.94758207,92.83754756,95.11871175,95.30128046 +172,97.94758207,92.83754756,95.11871175,95.30128046 +173,97.94758207,92.83754756,95.11871175,95.30128046 +174,97.94758207,92.83754756,95.11871175,95.30128046 +175,97.94758207,92.83754756,95.11871175,95.30128046 +176,97.94758207,92.83754756,95.11871175,95.30128046 +177,97.94758207,92.83754756,95.11871175,95.30128046 +178,97.94758207,92.83754756,95.11871175,95.30128046 +179,97.94758207,92.83754756,95.11871175,95.30128046 +180,97.94758207,92.83754756,95.11871175,95.30128046 +181,97.94758207,92.83754756,95.11871175,95.30128046 +182,97.94758207,92.83754756,95.11871175,95.30128046 +183,97.94758207,92.83754756,95.11871175,95.30128046 +184,97.94758207,92.83754756,95.11871175,95.30128046 +185,97.94758207,92.83754756,95.11871175,95.30128046 +186,97.94758207,92.83754756,95.11871175,95.30128046 +187,97.94758207,92.83754756,95.11871175,95.30128046 +188,97.94758207,92.83754756,95.11871175,95.30128046 +189,97.94758207,92.83754756,95.11871175,95.30128046 +190,97.94758207,92.83754756,95.11871175,95.30128046 +191,97.94758207,92.83754756,95.11871175,95.30128046 +192,97.94758207,92.83754756,95.11871175,95.30128046 +193,97.94758207,92.83754756,95.11871175,95.30128046 +194,97.94758207,92.83754756,95.11871175,95.30128046 +195,97.94758207,92.83754756,95.11871175,95.30128046 +196,97.94758207,92.83754756,95.11871175,95.30128046 +197,97.94758207,92.83754756,95.11871175,95.30128046 +198,98.04939711,92.83754756,95.11871175,95.33521881 +199,98.16385952,92.83754756,95.11871175,95.37337294 +200,98.28908463,92.83754756,95.11871175,95.41511465 +201,98.42538882,93.11895181,95.11871175,95.55435079 +202,98.57308034,93.44953482,95.11871175,95.71377564 +203,98.73245902,93.79772956,95.11871175,95.88296678 +204,98.90381609,94.1637065,95.11871175,96.06207811 +205,99.08743402,94.54762299,95.11871175,96.25125625 +206,99.28358632,94.94962314,95.11871175,96.4506404 +207,99.49253735,95.36983781,95.11871175,96.6603623 +208,99.71454217,95.80838454,95.38992062,96.97094911 +209,99.94984642,96.26536749,95.87059774,97.36193722 +210,100.1986861,96.74087746,96.36895722,97.76950693 +211,100.4612875,97.23499183,96.88499373,98.19375769 +212,100.737867,97.74777459,97.41869002,98.6347772 +213,101.0286311,98.27927631,97.97001698,99.09264146 +214,101.3337761,98.82953419,98.53893374,99.56741468 +215,101.6534881,99.39857206,99.12538773,100.0591493 +216,101.9879429,99.98640043,99.72931479,100.567886 +217,102.337306,100.5930165,100.3506392,101.0936539 +218,102.7017323,101.2184044,100.989274,101.6364702 +219,103.0813662,101.8625349,101.6451207,102.1963406 +220,103.4763417,102.5253658,102.3180698,102.7732591 +221,103.8867818,103.2068418,103.0080008,103.3672081 +222,104.3127991,103.9068949,103.7147822,103.9781587 +223,104.7544953,104.6254442,104.4382717,104.6060704 +224,105.2119613,105.362396,105.1783164,105.2508912 +225,105.6852774,106.1176442,105.9347532,105.9125583 +226,106.1745129,106.8910702,106.7074082,106.5909971 +227,106.6797264,107.6825431,107.4960979,107.2861225 +228,107.2009656,108.4919199,108.3006285,107.997838 +229,107.7382675,109.3190454,109.1207964,108.7260364 +230,108.2916583,110.1637529,109.9563887,109.4706 +231,108.8611533,111.0258638,110.8071828,110.2314 +232,109.4467572,111.9051881,111.6729471,111.0082975 +233,110.048464,112.8015244,112.5534408,111.8011431 +234,110.6662571,113.7146603,113.4484144,112.6097773 +235,111.3001091,114.6443724,114.3576099,113.4340305 +236,111.9499823,115.5904267,115.2807608,114.2737233 +237,112.6158284,116.5525786,116.2175924,115.1286665 +238,113.2975887,117.5305732,117.1678223,115.9986614 +239,113.9951942,118.5241458,118.1311602,116.8835001 +240,114.7085656,119.5330215,119.1073083,117.7829651 +241,115.4376137,120.556916,120.0959617,118.6968305 +242,116.1822389,121.5955358,121.0968085,119.6248611 +243,116.942332,122.648578,122.10953,120.5668133 +244,117.7177737,123.715731,123.133801,121.5224352 +245,118.5084351,124.7966747,124.16929,122.4914666 +246,119.3141778,125.8910804,125.2156595,123.4736392 +247,120.1348537,126.9986117,126.2725664,124.4686773 +248,120.9703056,128.1189241,127.3396619,125.4762972 +249,121.8203669,129.2516656,128.4165922,126.4962082 +250,122.6848622,130.3964771,129.5029982,127.5281125 +251,123.5636069,131.5529925,130.5985163,128.5717052 +252,124.4564079,132.7208389,131.7027786,129.6266751 +253,125.3630635,133.8996371,132.8154126,130.6927044 +254,126.2833633,135.0890018,133.9360422,131.7694691 +255,127.2170889,136.2885418,135.0642876,132.8566394 +256,128.1640137,137.4978605,136.1997656,133.9538799 +257,129.1239033,138.716556,137.3420898,135.0608497 +258,130.0965154,139.9442215,138.4908711,136.1772027 +259,131.0816002,141.1804455,139.6457177,137.3025878 +260,132.0789007,142.4248124,140.8062356,138.4366496 +261,133.0881525,143.6769023,141.9720286,139.5790278 +262,134.1090844,144.9362918,143.1426991,140.7293584 +263,135.1414183,146.202554,144.3178475,141.8872733 +264,136.1848696,147.475259,145.4970734,143.0524007 +265,137.2391473,148.7539741,146.6799753,144.2243656 +266,138.3039542,150.0382639,147.8661509,145.4027897 +267,139.3789872,151.3276912,149.0551976,146.587292 +268,140.4639374,152.6218167,150.2467126,147.7774889 +269,141.5584906,153.9201996,151.4402933,148.9729945 +270,142.6623269,155.2223977,152.6355373,150.1734206 +271,143.7751217,156.5279683,153.832043,151.3783777 +272,144.8965453,157.8364676,155.0294096,152.5874742 +273,146.0262635,159.1474517,156.2272374,153.8003175 +274,147.1639376,160.4604766,157.4251281,155.0165141 +275,148.3092247,161.7750987,158.6226853,156.2356696 +276,149.461778,163.090875,159.8195141,157.457389 +277,150.621247,164.4073631,161.015222,158.6812774 +278,151.7872777,165.724122,162.2094189,159.9069395 +279,152.9595127,167.0407123,163.4017172,161.1339807 +280,154.1375919,168.3566961,164.5917323,162.3620068 +281,155.321152,169.6716378,165.7790826,163.5906241 +282,156.5098275,170.9851038,166.9633899,164.8194404 +283,157.7032503,172.2966636,168.1442796,166.0480645 +284,158.9010505,173.6058893,169.3213807,167.2761068 +285,160.1028562,174.9123562,170.4943265,168.5031796 +286,161.3082938,176.2156432,171.6627542,169.7288971 +287,162.5169886,177.5153329,172.8263058,170.9528758 +288,163.7285644,178.8110119,173.9846277,172.1747347 +289,164.9426445,180.102271,175.1373712,173.3940956 +290,166.1588513,181.3887056,176.2841928,174.6105832 +291,167.3768067,182.6699161,177.4247539,175.8238256 +292,168.5961328,183.9455075,178.5587218,177.033454 +293,169.8164512,185.2150905,179.6857691,178.2391036 +294,171.0373842,186.4782811,180.8055743,179.4404132 +295,172.2585545,187.7347013,181.917822,180.6370259 +296,173.4795854,188.9839787,183.0222029,181.828589 +297,174.7001014,190.2257477,184.1184139,183.0147543 +298,175.9197281,191.4596487,185.2061586,184.1951785 +299,177.1380923,192.685329,186.2851471,185.3695228 +300,178.3548229,193.9024428,187.3550965,186.5374541 +301,179.5695503,195.1106513,188.4157306,187.6986441 +302,180.7819071,196.3096231,189.4667804,188.8527702 +303,181.9915282,197.4990343,190.5079843,189.9995156 +304,183.1980513,198.6785687,191.5390879,191.1385693 +305,184.4011164,199.8479179,192.5598442,192.2696262 +306,185.6003667,201.0067816,193.570014,193.3923874 +307,186.7954486,202.1548679,194.5693657,194.5065607 +308,187.9860118,203.291893,195.5576756,195.6118601 +309,189.1717095,204.417582,196.5347279,196.7080065 +310,190.352199,205.5316685,197.5003149,197.7947275 +311,191.5271412,206.6338951,198.454237,198.8717578 +312,192.6962013,207.7240132,199.3963026,199.938839 +313,193.8590491,208.8017835,200.3263288,200.9957205 +314,195.0153586,209.8669762,201.2441406,202.0421585 +315,196.1648089,210.9193705,202.1495718,203.0779171 diff --git a/dataset/xiandao/c6.txt b/dataset/xiandao/c6.txt new file mode 100644 index 0000000..6da2bf7 --- /dev/null +++ b/dataset/xiandao/c6.txt @@ -0,0 +1,315 @@ +29.10206571 +37.72371374 +46.30597344 +54.85235886 +56.62552062 +58.36924525 +60.0864704 +61.77995584 +63.99136847 +66.1840545 +68.36028042 +70.5221612 +71.42482968 +72.3169529 +73.20022769 +74.07622309 +74.94638596 +75.81204639 +76.67442293 +77.53462772 +78.06032948 +78.58578435 +79.1118146 +79.63915516 +80.16845805 +80.70029674 +81.23517027 +81.7735073 +82.31567006 +82.86195812 +83.41261208 +83.96781717 +84.43206697 +84.90108576 +85.37491275 +85.85354489 +86.33693981 +86.82501875 +87.3176694 +87.81474849 +88.31608449 +88.82148004 +89.33071439 +89.84354565 +90.3597131 +90.87893921 +91.40093175 +91.92538572 +92.45198521 +92.98040518 +93.51031314 +94.04137091 +94.57323595 +95.10556296 +95.63800534 +96.17021635 +96.70185045 +97.23256457 +97.76201907 +98.28987884 +98.81581444 +99.33950279 +99.86062827 +100.3788833 +100.799267 +101.2161926 +101.6293813 +102.0385652 +102.4434876 +102.8439039 +103.2395815 +103.6303009 +104.0158552 +104.396051 +104.7707085 +105.139662 +105.5027592 +105.8598624 +106.2108481 +106.5556068 +106.8940438 +107.2260783 +107.5516441 +107.8706892 +108.1831756 +108.4890795 +108.788391 +109.0811137 +109.367265 +109.6468755 +109.9199887 +110.186661 +110.4469615 +110.7009711 +110.9487829 +111.1905014 +111.3580991 +111.5198456 +111.6758782 +111.8263436 +111.9713985 +112.1112087 +112.2459489 +112.3782155 +112.5104821 +112.6427487 +112.7750153 +112.9072819 +113.0395485 +113.1718151 +113.3040817 +113.4363483 +113.5686149 +113.7008816 +113.8331482 +113.9654148 +114.0976814 +114.229948 +114.3622146 +114.4944812 +114.6267478 +114.7590144 +114.891281 +115.0235477 +115.1558143 +115.2880809 +115.4203475 +115.5526141 +115.6475159 +115.7424177 +115.8373195 +115.9322214 +116.0271232 +116.122025 +116.2169268 +116.3118286 +116.4067305 +116.5016323 +116.5965341 +116.6914359 +116.7863377 +116.8812396 +116.9761414 +117.0710432 +117.165945 +117.2608468 +117.3557486 +117.4506505 +117.5455523 +117.6404541 +117.735356 +117.8302578 +117.9251596 +118.0200614 +118.1149632 +118.209865 +118.3047668 +118.3996687 +118.4945705 +118.5894723 +118.7430791 +118.8966859 +119.0502928 +119.2038996 +119.3575064 +119.5111132 +119.66472 +119.8183269 +119.9719337 +120.1255405 +120.3410954 +120.6199926 +120.9031699 +121.1905016 +121.4818542 +121.7770873 +122.0760531 +122.3785971 +122.6845585 +122.9937702 +123.3060594 +123.6212477 +123.9391517 +124.259583 +124.582349 +124.9072533 +125.2340954 +125.5626719 +125.8927766 +126.2242007 +126.5567339 +126.890164 +127.5350476 +128.1804012 +128.8260108 +129.4716627 +130.1171441 +130.7622433 +131.4067503 +132.0504575 +132.6931595 +133.3346546 +133.9747441 +134.613234 +135.2499343 +135.8846604 +136.5172331 +137.1474793 +137.775232 +138.4003314 +139.0226251 +139.6419683 +140.2582245 +140.871266 +141.4809741 +142.0872396 +142.6899633 +143.2890561 +143.8844398 +144.4760473 +145.0638225 +145.6477213 +146.2277117 +146.8037739 +147.7231425 +148.6385812 +149.5501089 +150.4577574 +151.3615723 +152.2616127 +153.1579516 +154.0506758 +154.9398859 +155.8256967 +156.7082371 +157.5876498 +158.4640915 +159.3377331 +160.2087588 +161.0773667 +161.9437682 +162.808188 +163.6708636 +164.532045 +165.3919945 +166.2509863 +167.1093059 +167.9672494 +168.8251236 +169.6832447 +170.5419378 +171.4015367 +172.2623823 +173.1248225 +173.9892108 +174.8559057 +175.4924136 +176.1319554 +176.7748977 +177.4216077 +178.0724516 +178.7277933 +179.3879931 +180.0534062 +180.724381 +181.4012578 +182.0843664 +182.7740249 +183.4705376 +184.1741929 +184.8852616 +185.6039941 +186.3306187 +187.0653393 +187.8083325 +188.5597454 +189.3196931 +190.0882554 +190.8654747 +191.6513525 +192.4458466 +193.2488681 +194.0602778 +194.8798829 +195.7074339 +196.5426204 +197.385068 +198.2343338 +198.9538561 +199.6790907 +200.4093662 +201.1439264 +201.8819257 +202.6224249 +203.3643859 +204.1066673 +204.8480193 +205.5870782 +206.3223613 +207.0522618 +207.7750424 +208.4888303 +209.1916107 +209.8812214 +210.5553457 +211.2115068 +211.8470607 +212.4591899 +213.0448962 +213.6009936 +214.1241015 +214.6106366 +215.0568061 +215.4995219 +215.9422376 diff --git a/dataset/xiandao/c6_average.xlsx b/dataset/xiandao/c6_average.xlsx new file mode 100644 index 0000000..d54d4b4 Binary files /dev/null and b/dataset/xiandao/c6_average.xlsx differ diff --git a/dataset/xiandao/c6_wear.csv b/dataset/xiandao/c6_wear.csv new file mode 100644 index 0000000..9b335bd --- /dev/null +++ b/dataset/xiandao/c6_wear.csv @@ -0,0 +1,316 @@ +cut,flute_1,flute_2,flute_3, +1,62.78864802,9.896640679,14.62090844,29.10206571 +2,64.13604296,19.79328136,29.24181689,37.72371374 +3,65.36527295,29.68992204,43.86272533,46.30597344 +4,66.4868801,39.58656272,58.48363377,54.85235886 +5,67.51080822,43.01999443,59.34575921,56.62552062 +6,68.44642494,46.45342614,60.20788466,58.36924525 +7,69.30254323,49.88685786,61.0700101,60.0864704 +8,70.08744241,53.32028957,61.93213554,61.77995584 +9,70.8088887,58.52379832,62.6414184,63.99136847 +10,71.47415519,63.72730707,63.35070125,66.1840545 +11,72.09004135,68.93081581,64.05998411,68.36028042 +12,72.66289207,74.13432456,64.76926696,70.5221612 +13,73.19861618,75.21507024,65.86080262,71.42482968 +14,73.70270453,76.29581591,66.95233827,72.3169529 +15,74.18024756,77.37656158,68.04387392,73.20022769 +16,74.63595243,78.45730726,69.13540957,74.07622309 +17,75.07415974,79.53805293,70.22694522,74.94638596 +18,75.4988597,80.6187986,71.31848087,75.81204639 +19,75.91370798,81.69954428,72.41001653,76.67442293 +20,76.32204104,82.78028995,73.50155218,77.53462772 +21,76.72689103,83.61749165,73.83660575,78.06032948 +22,77.13100039,84.45469334,74.17165933,78.58578435 +23,77.53683587,85.29189504,74.5067129,79.1118146 +24,77.94660226,86.12909673,74.84176648,79.63915516 +25,78.36225568,86.96629843,75.17682005,80.16845805 +26,78.78551648,87.80350012,75.51187363,80.70029674 +27,79.21788179,88.64070181,75.8469272,81.23517027 +28,79.66063762,89.47790351,76.18198078,81.7735073 +29,80.11487062,90.3151052,76.51703435,82.31567006 +30,80.58147952,91.1523069,76.85208793,82.86195812 +31,81.06118616,91.98950859,77.1871415,83.41261208 +32,81.55454615,92.82671029,77.52219508,83.96781717 +33,82.06195924,93.25202035,77.98222132,84.43206697 +34,82.58367929,93.67733042,78.44224757,84.90108576 +35,83.11982397,94.10264048,78.90227381,85.37491275 +36,83.67038407,94.52795055,79.36230005,85.85354489 +37,84.23523251,94.95326061,79.8223263,86.33693981 +38,84.81413304,95.37857068,80.28235254,86.82501875 +39,85.40674866,95.80388075,80.74237878,87.3176694 +40,86.01264963,96.22919081,81.20240503,87.81474849 +41,86.63132132,96.65450088,81.66243127,88.31608449 +42,87.26217167,97.07981094,82.12245751,88.82148004 +43,87.90453839,97.50512101,82.58248376,89.33071439 +44,88.55769588,97.93043107,83.04251,89.84354565 +45,89.22086191,98.35574114,83.50253624,90.3597131 +46,89.89320394,98.7810512,83.96256249,90.87893921 +47,90.57384526,99.20636127,84.42258873,91.40093175 +48,91.26187086,99.63167133,84.88261497,91.92538572 +49,91.956333,100.0569814,85.34264122,92.45198521 +50,92.65625657,100.4822915,85.80266746,92.98040518 +51,93.36064421,100.9076015,86.2626937,93.51031314 +52,94.06848117,101.3329116,86.72271995,94.04137091 +53,94.77873996,101.7582217,87.18274619,94.57323595 +54,95.49038474,102.1835317,87.64277243,95.10556296 +55,96.20237554,102.6088418,88.10279867,95.63800534 +56,96.91367223,103.0341519,88.56282492,96.17021635 +57,97.62323828,103.4594619,89.02285116,96.70185045 +58,98.33004431,103.884772,89.4828774,97.23256457 +59,99.03307145,104.3100821,89.94290365,97.76201907 +60,99.73131453,104.7353921,90.40292989,98.28987884 +61,100.423785,105.1607022,90.86295613,98.81581444 +62,101.1095138,105.5860122,91.32298238,99.33950279 +63,101.7875539,106.0113223,91.78300862,99.86062827 +64,102.4569826,106.4366324,92.24303486,100.3788833 +65,103.1169041,106.4907197,92.79017713,100.799267 +66,103.7664512,106.5448071,93.3373194,101.2161926 +67,104.4047877,106.5988945,93.88446166,101.6293813 +68,105.0311097,106.6529819,94.43160393,102.0385652 +69,105.6446474,106.7070692,94.97874619,102.4434876 +70,106.2446665,106.7611566,95.52588846,102.8439039 +71,106.8304699,106.815244,96.07303072,103.2395815 +72,107.4013983,106.8693313,96.62017299,103.6303009 +73,107.9568315,106.9234187,97.16731525,104.0158552 +74,108.4961893,106.9775061,97.71445752,104.396051 +75,109.0189324,107.0315934,98.26159979,104.7707085 +76,109.524563,107.0856808,98.80874205,105.139662 +77,110.0126251,107.1397682,99.35588432,105.5027592 +78,110.4827052,107.1938555,99.90302658,105.8598624 +79,110.9344325,107.2479429,100.4501688,106.2108481 +80,111.3674791,107.3020303,100.9973111,106.5556068 +81,111.7815604,107.3561177,101.5444534,106.8940438 +82,112.1764343,107.410205,102.0915956,107.2260783 +83,112.5519021,107.4642924,102.6387379,107.5516441 +84,112.9078077,107.5183798,103.1858802,107.8706892 +85,113.2440373,107.5724671,103.7330224,108.1831756 +86,113.5605194,107.6265545,104.2801647,108.4890795 +87,113.8572241,107.6806419,104.827307,108.788391 +88,114.1341627,107.7347292,105.3744492,109.0811137 +89,114.391387,107.7888166,105.9215915,109.367265 +90,114.6289887,107.842904,106.4687338,109.6468755 +91,114.8470987,107.8969914,107.015876,109.9199887 +92,115.0458861,107.9510787,107.5630183,110.186661 +93,115.2255578,108.0051661,108.1101606,110.4469615 +94,115.386357,108.0592535,108.6573028,110.7009711 +95,115.5285627,108.1133408,109.2044451,110.9487829 +96,115.6524886,108.1674282,109.7515874,111.1905014 +97,115.7584818,108.3737331,109.9420823,111.3580991 +98,115.8469217,108.580038,110.1325772,111.5198456 +99,115.9182194,108.786343,110.3230721,111.6758782 +100,115.9728158,108.9926479,110.513567,111.8263436 +101,116.0111807,109.1989528,110.7040619,111.9713985 +102,116.0338116,109.4052577,110.8945568,112.1112087 +103,116.0412323,109.6115626,111.0850517,112.2459489 +104,116.0412323,109.8178676,111.2755466,112.3782155 +105,116.0412323,110.0241725,111.4660415,112.5104821 +106,116.0412323,110.2304774,111.6565364,112.6427487 +107,116.0412323,110.4367823,111.8470313,112.7750153 +108,116.0412323,110.6430872,112.0375262,112.9072819 +109,116.0412323,110.8493922,112.2280211,113.0395485 +110,116.0412323,111.0556971,112.418516,113.1718151 +111,116.0412323,111.262002,112.6090109,113.3040817 +112,116.0412323,111.4683069,112.7995058,113.4363483 +113,116.0412323,111.6746118,112.9900007,113.5686149 +114,116.0412323,111.8809168,113.1804956,113.7008816 +115,116.0412323,112.0872217,113.3709905,113.8331482 +116,116.0412323,112.2935266,113.5614855,113.9654148 +117,116.0412323,112.4998315,113.7519804,114.0976814 +118,116.0412323,112.7061364,113.9424753,114.229948 +119,116.0412323,112.9124414,114.1329702,114.3622146 +120,116.0412323,113.1187463,114.3234651,114.4944812 +121,116.0412323,113.3250512,114.51396,114.6267478 +122,116.0412323,113.5313561,114.7044549,114.7590144 +123,116.0412323,113.737661,114.8949498,114.891281 +124,116.0412323,113.943966,115.0854447,115.0235477 +125,116.0412323,114.1502709,115.2759396,115.1558143 +126,116.0412323,114.3565758,115.4664345,115.2880809 +127,116.0412323,114.5628807,115.6569294,115.4203475 +128,116.0412323,114.7691856,115.8474243,115.5526141 +129,116.0412323,114.840982,116.0603334,115.6475159 +130,116.0412323,114.9127783,116.2732426,115.7424177 +131,116.0412323,114.9845746,116.4861517,115.8373195 +132,116.0412323,115.056371,116.6990608,115.9322214 +133,116.0412323,115.1281673,116.9119699,116.0271232 +134,116.0412323,115.1999636,117.1248791,116.122025 +135,116.0412323,115.27176,117.3377882,116.2169268 +136,116.0412323,115.3435563,117.5506973,116.3118286 +137,116.0412323,115.4153526,117.7636065,116.4067305 +138,116.0412323,115.487149,117.9765156,116.5016323 +139,116.0412323,115.5589453,118.1894247,116.5965341 +140,116.0412323,115.6307416,118.4023338,116.6914359 +141,116.0412323,115.7025379,118.615243,116.7863377 +142,116.0412323,115.7743343,118.8281521,116.8812396 +143,116.0412323,115.8461306,119.0410612,116.9761414 +144,116.0412323,115.9179269,119.2539704,117.0710432 +145,116.0412323,115.9897233,119.4668795,117.165945 +146,116.0412323,116.0615196,119.6797886,117.2608468 +147,116.0412323,116.1333159,119.8926977,117.3557486 +148,116.0412323,116.2051123,120.1056069,117.4506505 +149,116.0412323,116.2769086,120.318516,117.5455523 +150,116.0412323,116.3487049,120.5314251,117.6404541 +151,116.0412323,116.4205013,120.7443343,117.735356 +152,116.0412323,116.4922976,120.9572434,117.8302578 +153,116.0412323,116.5640939,121.1701525,117.9251596 +154,116.0412323,116.6358903,121.3830616,118.0200614 +155,116.0412323,116.7076866,121.5959708,118.1149632 +156,116.0412323,116.7794829,121.8088799,118.209865 +157,116.0412323,116.8512792,122.021789,118.3047668 +158,116.0412323,116.9230756,122.2346982,118.3996687 +159,116.0412323,116.9948719,122.4476073,118.4945705 +160,116.0412323,117.0666682,122.6605164,118.5894723 +161,116.0412323,117.287211,122.9007941,118.7430791 +162,116.0412323,117.5077538,123.1410717,118.8966859 +163,116.0412323,117.7282966,123.3813494,119.0502928 +164,116.0412323,117.9488394,123.6216271,119.2038996 +165,116.0412323,118.1693822,123.8619047,119.3575064 +166,116.0412323,118.389925,124.1021824,119.5111132 +167,116.0412323,118.6104678,124.34246,119.66472 +168,116.0412323,118.8310106,124.5827377,119.8183269 +169,116.0412323,119.0515534,124.8230154,119.9719337 +170,116.0412323,119.2720961,125.063293,120.1255405 +171,116.2270765,119.4926389,125.3035707,120.3410954 +172,116.6029478,119.7131817,125.5438483,120.6199926 +173,116.9916592,119.9337245,125.784126,120.9031699 +174,117.3928337,120.1542673,126.0244037,121.1905016 +175,117.8060712,120.3748101,126.2646813,121.4818542 +176,118.2309499,120.5953529,126.504959,121.7770873 +177,118.6670268,120.8158957,126.7452367,122.0760531 +178,119.1138385,121.0364385,126.9855143,122.3785971 +179,119.5709023,121.2569813,127.225792,122.6845585 +180,120.0377171,121.477524,127.4660696,122.9937702 +181,120.5137642,121.6980668,127.7063473,123.3060594 +182,120.9985086,121.9186096,127.946625,123.6212477 +183,121.4914,122.1391524,128.1869026,123.9391517 +184,121.9918734,122.3596952,128.4271803,124.259583 +185,122.4993512,122.580238,128.6674579,124.582349 +186,123.0132434,122.8007808,128.9077356,124.9072533 +187,123.5329492,123.0213236,129.1480133,125.2340954 +188,124.0578583,123.2418664,129.3882909,125.5626719 +189,124.5873519,123.4624092,129.6285686,125.8927766 +190,125.1208041,123.6829519,129.8688462,126.2242007 +191,125.6575832,123.9034947,130.1091239,126.5567339 +192,126.1970529,124.1240375,130.3494016,126.890164 +193,126.7385738,124.8334912,131.0330779,127.5350476 +194,127.2815045,125.5429449,131.7167543,128.1804012 +195,127.8252031,126.2523985,132.4004307,128.8260108 +196,128.3690289,126.9618522,133.084107,129.4716627 +197,128.912343,127.6713059,133.7677834,130.1171441 +198,129.4545105,128.3807596,134.4514598,130.7622433 +199,129.9949016,129.0902132,135.1351362,131.4067503 +200,130.532893,129.7996669,135.8188125,132.0504575 +201,131.0678691,130.5091206,136.5024889,132.6931595 +202,131.5992242,131.2185743,137.1861653,133.3346546 +203,132.1263628,131.9280279,137.8698416,133.9747441 +204,132.6487023,132.6374816,138.553518,134.613234 +205,133.1656732,133.3469353,139.2371944,135.2499343 +206,133.6767215,134.056389,139.9208707,135.8846604 +207,134.1813097,134.7658426,140.6045471,136.5172331 +208,134.678918,135.4752963,141.2882235,137.1474793 +209,135.1690461,136.18475,141.9718998,137.775232 +210,135.6512144,136.8942036,142.6555762,138.4003314 +211,136.1249653,137.6036573,143.3392526,139.0226251 +212,136.5898649,138.313111,144.022929,139.6419683 +213,137.0455035,139.0225647,144.7066053,140.2582245 +214,137.491498,139.7320183,145.3902817,140.871266 +215,137.9274922,140.441472,146.0739581,141.4809741 +216,138.3531587,141.1509257,146.7576344,142.0872396 +217,138.7681996,141.8603794,147.4413108,142.6899633 +218,139.1723481,142.569833,148.1249872,143.2890561 +219,139.5653693,143.2792867,148.8086635,143.8844398 +220,139.9470615,143.9887404,149.4923399,144.4760473 +221,140.3172571,144.6981941,150.1760163,145.0638225 +222,140.6758236,145.4076477,150.8596926,145.6477213 +223,141.0226648,146.1171014,151.543369,146.2277117 +224,141.3577211,146.8265551,152.2270454,146.8037739 +225,141.680971,147.9628628,153.5255936,147.7231425 +226,141.9924313,149.0991705,154.8241418,148.6385812 +227,142.2921584,150.2354782,156.12269,149.5501089 +228,142.5802481,151.3717859,157.4212382,150.4577574 +229,142.856837,152.5080936,158.7197863,151.3615723 +230,143.1221024,153.6444013,160.0183345,152.2616127 +231,143.3762632,154.780709,161.3168827,153.1579516 +232,143.6195797,155.9170167,162.6154309,154.0506758 +233,143.8523541,157.0533244,163.9139791,154.9398859 +234,144.0749307,158.1896321,165.2125273,155.8256967 +235,144.2876959,159.3259398,166.5110755,156.7082371 +236,144.4910781,160.4622475,167.8096237,157.5876498 +237,144.6855475,161.5985552,169.1081719,158.4640915 +238,144.8716163,162.7348629,170.4067201,159.3377331 +239,145.0498375,163.8711706,171.7052683,160.2087588 +240,145.2208054,165.0074783,173.0038165,161.0773667 +241,145.3851541,166.143786,174.3023646,161.9437682 +242,145.5435575,167.2800937,175.6009128,162.808188 +243,145.6967283,168.4164014,176.899461,163.6708636 +244,145.8454166,169.5527091,178.1980092,164.532045 +245,145.9904093,170.6890168,179.4965574,165.3919945 +246,146.1325289,171.8253245,180.7951056,166.2509863 +247,146.2726316,172.9616322,182.0936538,167.1093059 +248,146.4116064,174.0979399,183.392202,167.9672494 +249,146.550373,175.2342476,184.6907502,168.8251236 +250,146.6898802,176.3705554,185.9892984,169.6832447 +251,146.8311038,177.5068631,187.2878466,170.5419378 +252,146.9750444,178.6431708,188.5863948,171.4015367 +253,147.1227254,179.7794785,189.8849429,172.2623823 +254,147.2751901,180.9157862,191.1834911,173.1248225 +255,147.4334992,182.0520939,192.4820393,173.9892108 +256,147.5987281,183.1884016,193.7805875,174.8559057 +257,147.7719636,183.779055,194.9262222,175.4924136 +258,147.9543008,184.3697084,196.0718569,176.1319554 +259,148.1468398,184.9603618,197.2174916,176.7748977 +260,148.3506817,185.5510152,198.3631263,177.4216077 +261,148.5669251,186.1416687,199.5087611,178.0724516 +262,148.7966619,186.7323221,200.6543958,178.7277933 +263,149.0409732,187.3229755,201.8000305,179.3879931 +264,149.3009244,187.9136289,202.9456652,180.0534062 +265,149.5775609,188.5042823,204.0912999,180.724381 +266,149.871903,189.0949358,205.2369346,181.4012578 +267,150.1849406,189.6855892,206.3825693,182.0843664 +268,150.517628,190.2762426,207.528204,182.7740249 +269,150.870878,190.866896,208.6738387,183.4705376 +270,151.245556,191.4575494,209.8194734,184.1741929 +271,151.6424737,192.0482029,210.9651081,184.8852616 +272,152.0623831,192.6388563,212.1107428,185.6039941 +273,152.5059689,193.2295097,213.2563775,186.3306187 +274,152.9738426,193.8201631,214.4020122,187.0653393 +275,153.4665341,194.4108165,215.5476469,187.8083325 +276,153.9844848,195.0014699,216.6932816,188.5597454 +277,154.5280396,195.5921234,217.8389164,189.3196931 +278,155.0974384,196.1827768,218.9845511,190.0882554 +279,155.6928081,196.7734302,220.1301858,190.8654747 +280,156.3141533,197.3640836,221.2758205,191.6513525 +281,156.9613477,197.954737,222.4214552,192.4458466 +282,157.634124,198.5453905,223.5670899,193.2488681 +283,158.3320649,199.1360439,224.7127246,194.0602778 +284,159.0545922,199.7266973,225.8583593,194.8798829 +285,159.800957,200.3173507,227.003994,195.7074339 +286,160.5702285,200.9080041,228.1496287,196.5426204 +287,161.361283,201.4986576,229.2952634,197.385068 +288,162.1727923,202.089311,230.4408981,198.2343338 +289,163.0032119,203.259123,230.5992333,198.9538561 +290,163.8507685,204.4289351,230.7575685,199.6790907 +291,164.7134478,205.5987472,230.9159037,200.4093662 +292,165.5889811,206.7685593,231.0742389,201.1439264 +293,166.4748318,207.9383713,231.2325741,201.8819257 +294,167.3681819,209.1081834,231.3909093,202.6224249 +295,168.2659177,210.2779955,231.5492445,203.3643859 +296,169.1646147,211.4478075,231.7075797,204.1066673 +297,170.0605234,212.6176196,231.8659149,204.8480193 +298,170.9495527,213.7874317,232.0242501,205.5870782 +299,171.827255,214.9572437,232.1825853,206.3223613 +300,172.688809,216.1270558,232.3409205,207.0522618 +301,173.5290036,217.2968679,232.4992557,207.7750424 +302,174.3422199,218.46668,232.6575909,208.4888303 +303,175.1224141,219.636492,232.8159261,209.1916107 +304,175.8630988,220.8063041,232.9742613,209.8812214 +305,176.5573244,221.9761162,233.1325965,210.5553457 +306,177.1976604,223.1459282,233.2909317,211.2115068 +307,177.776175,224.3157403,233.4492669,211.8470607 +308,178.2844153,225.4855524,233.6076021,212.4591899 +309,178.7133868,226.6553645,233.7659373,213.0448962 +310,179.0535319,227.8251765,233.9242725,213.6009936 +311,179.2947081,228.9949886,234.0826077,214.1241015 +312,179.4261663,230.1648007,234.2409429,214.6106366 +313,179.4365275,231.3346127,234.3992781,215.0568061 +314,179.4365275,232.5044248,234.5576133,215.4995219 +315,179.4365275,233.6742369,234.7159485,215.9422376 diff --git a/figure/by_code/txt.txt b/figure/by_code/txt.txt new file mode 100644 index 0000000..e69de29