-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path_pathops.pyx
1555 lines (1306 loc) · 45.5 KB
/
_pathops.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from ._skia.core cimport (
SkPath,
SkPathFillType,
SkPoint,
SkScalar,
SkRect,
SkLineCap,
SkLineJoin,
SkPathDirection,
kMove_Verb,
kLine_Verb,
kQuad_Verb,
kConic_Verb,
kCubic_Verb,
kClose_Verb,
kDone_Verb,
SK_ScalarNearlyZero,
ConvertConicToQuads,
SkPaint,
SkPaintStyle,
sk_sp,
SkPathEffect,
SkDashPathEffect,
)
from ._skia.pathops cimport (
Op,
Simplify,
AsWinding,
SkOpBuilder,
SkPathOp,
kDifference_SkPathOp,
kIntersect_SkPathOp,
kUnion_SkPathOp,
kXOR_SkPathOp,
kReverseDifference_SkPathOp,
)
from libc.stdint cimport uint8_t, int32_t, uint32_t
from libc.math cimport fabs, sqrt, isfinite
from cpython.mem cimport PyMem_Malloc, PyMem_Free, PyMem_Realloc
from libc.string cimport memset
cimport cython
import itertools
cdef class PathOpsError(Exception):
pass
cdef class UnsupportedVerbError(PathOpsError):
pass
cdef class OpenPathError(PathOpsError):
pass
# Helpers to convert to/from a float and its bit pattern
cdef inline int32_t _float2bits(float x):
cdef FloatIntUnion data
data.Float = x
return data.SignBitInt
def float2bits(float x):
"""
>>> hex(float2bits(17.5))
'0x418c0000'
>>> hex(float2bits(-10.0))
'0xc1200000'
"""
# we use unsigned to match the C printf %x behaviour
# used by Skia's SkPath::dumpHex
cdef uint32_t bits = <uint32_t>_float2bits(x)
return bits
cdef inline float _bits2float(int32_t float_as_bits):
cdef FloatIntUnion data
data.SignBitInt = float_as_bits
return data.Float
def bits2float(long long float_as_bits):
"""
>>> bits2float(0x418c0000)
17.5
>>> bits2float(-0x3ee00000)
-10.0
>>> bits2float(0xc1200000)
-10.0
"""
return _bits2float(<int32_t>float_as_bits)
cdef float SCALAR_NEARLY_ZERO_SQD = SK_ScalarNearlyZero * SK_ScalarNearlyZero
cdef inline bint can_normalize(SkScalar dx, SkScalar dy):
return (dx*dx + dy*dy) > SCALAR_NEARLY_ZERO_SQD
cdef inline bint points_almost_equal(const SkPoint& p1, const SkPoint& p2):
return not can_normalize(p1.x() - p2.x(), p1.y() - p2.y())
cdef inline bint is_middle_point(
const SkPoint& p1, const SkPoint& p2, const SkPoint& p3
):
cdef SkScalar midx = (p1.x() + p3.x()) / 2.0
cdef SkScalar midy = (p1.y() + p3.y()) / 2.0
return not can_normalize(p2.x() - midx, p2.y() - midy)
cdef inline bint collinear(
const SkPoint& p1, const SkPoint& p2, const SkPoint& p3
):
# the area of a triangle is zero iff the three vertices are collinear
return fabs(
p1.x() * (p2.y() - p3.y()) +
p2.x() * (p3.y() - p1.y()) +
p3.x() * (p1.y() - p2.y())
) <= 2 * SK_ScalarNearlyZero
def _format_hex_coords(floats):
floats = list(floats)
if not floats:
return ""
return "".join(
"\n bits2float(%s), # %g" % (hex(float2bits(f)), f)
for f in floats
) + "\n"
cdef class Path:
def __init__(self, other=None, fillType=None):
cdef Path static_path
self.originalOnCurvePoints = set()
if other is not None:
if isinstance(other, Path):
static_path = other
self.path = static_path.path
else:
other.draw(self.getPen())
if fillType is not None:
self.fillType = fillType
@staticmethod
cdef Path create(const SkPath& path):
cdef Path self = Path.__new__(Path)
self.path = path
return self
cpdef PathPen getPen(self, object glyphSet=None, bint allow_open_paths=True):
return PathPen(self, glyphSet=glyphSet, allow_open_paths=allow_open_paths)
def __iter__(self):
return RawPathIterator(self)
def add(self, PathVerb verb, *pts):
if verb is PathVerb.MOVE:
self.path.moveTo(pts[0][0], pts[0][1])
elif verb is PathVerb.LINE:
self.path.lineTo(pts[0][0], pts[0][1])
elif verb is PathVerb.QUAD:
self.path.quadTo(pts[0][0], pts[0][1],
pts[1][0], pts[1][1])
elif verb is PathVerb.CONIC:
self.path.conicTo(pts[0][0], pts[0][1],
pts[1][0], pts[1][1], pts[2])
elif verb is PathVerb.CUBIC:
self.path.cubicTo(pts[0][0], pts[0][1],
pts[1][0], pts[1][1],
pts[2][0], pts[2][1])
elif verb is PathVerb.CLOSE:
self.path.close()
else:
raise UnsupportedVerbError(verb)
cpdef void moveTo(self, SkScalar x, SkScalar y):
self.path.moveTo(x, y)
cpdef void lineTo(self, SkScalar x, SkScalar y):
self.path.lineTo(x, y)
cpdef void quadTo(
self,
SkScalar x1,
SkScalar y1,
SkScalar x2,
SkScalar y2
):
self.path.quadTo(x1, y1, x2, y2)
cpdef void conicTo(
self,
SkScalar x1,
SkScalar y1,
SkScalar x2,
SkScalar y2,
SkScalar w
):
self.path.conicTo(x1, y2, x2, y2, w)
cpdef void cubicTo(
self,
SkScalar x1,
SkScalar y1,
SkScalar x2,
SkScalar y2,
SkScalar x3,
SkScalar y3,
):
self.path.cubicTo(x1, y1, x2, y2, x3, y3)
cpdef void arcTo(
self,
SkScalar rx,
SkScalar ry,
SkScalar xAxisRotate,
ArcSize largeArc,
Direction sweep,
SkScalar x,
SkScalar y,
):
self.path.arcTo(rx, ry, xAxisRotate, largeArc, <SkPathDirection>sweep, x, y)
cpdef void close(self):
self.path.close()
cpdef void reset(self):
self.path.reset()
cpdef void rewind(self):
self.path.rewind()
cpdef draw(self, pen):
cdef str method
cdef tuple pts
cdef SegmentPenIterator iterator = SegmentPenIterator(self)
for method, pts in iterator:
getattr(pen, method)(*pts)
def dump(self, cpp=False, as_hex=False):
# print a text repesentation to stdout
if cpp: # C++
if as_hex:
self.path.dumpHex()
else:
self.path.dump()
else:
print(self._to_string(as_hex=as_hex)) # Python
def _to_string(self, as_hex=False):
# return a text representation as Python code
if self.path.isEmpty():
return ""
if as_hex:
coords_to_string = _format_hex_coords
else:
coords_to_string = lambda fs: (", ".join("%g" % f for f in fs))
s = ["path.fillType = %s" % self.fillType]
for verb, pts in self:
# if the last pt isn't a pt, such as for conic weight, peel it off
suffix = ''
if pts and not isinstance(pts[-1], tuple):
suffix = "[%s]" % coords_to_string([pts[-1]])
pts = pts[:-1]
method = VERB_METHODS[verb]
coords = itertools.chain(*pts)
line = "path.%s(%s)%s" % (method, coords_to_string(coords), suffix)
s.append(line)
return "\n".join(s)
def __str__(self):
return self._to_string()
def __repr__(self):
return "<pathops.Path object at %s: %d contours>" % (
hex(id(self)), self.countContours()
)
def __len__(self):
return self.countContours()
def __eq__(self, other):
if not isinstance(other, Path):
return NotImplemented
cdef Path static_other = other
return self.path == static_other.path
def __ne__(self, other):
return not self == other
__hash__ = None # Path is a mutable object, let's make it unhashable
cpdef addPath(self, Path path):
self.path.addPath(path.path)
@property
def fillType(self):
return FillType(<uint32_t>self.path.getFillType())
@fillType.setter
def fillType(self, value):
cdef uint32_t fill = int(FillType(value))
self.path.setFillType(<SkPathFillType>fill)
@property
def isConvex(self):
return self.path.isConvex()
def contains(self, tuple pt):
return self.path.contains(pt[0], pt[1])
@property
def bounds(self):
cdef SkRect r = self.path.computeTightBounds()
return (r.left(), r.top(), r.right(), r.bottom())
@property
def controlPointBounds(self):
cdef SkRect r = self.path.getBounds()
return (r.left(), r.top(), r.right(), r.bottom())
@property
def area(self):
return fabs(get_path_area(self.path))
@property
def clockwise(self):
return get_path_area(self.path) < 0
@clockwise.setter
def clockwise(self, value):
if self.clockwise != value:
self.reverse()
cpdef reverse(self):
cdef Path contour
cdef SkPath skpath
skpath.setFillType(self.path.getFillType())
for contour in self.contours:
reverse_contour(contour.path)
skpath.addPath(contour.path)
self.path = skpath
cpdef simplify(
self,
bint fix_winding=True,
bint keep_starting_points=True,
bint clockwise=False,
):
cdef list first_points
if keep_starting_points:
first_points = self.firstPoints
if not Simplify(self.path, &self.path):
raise PathOpsError("simplify operation did not succeed")
if fix_winding:
winding_from_even_odd(self, clockwise)
if keep_starting_points:
restore_starting_points(self, first_points)
def _has(self, verb):
return any(my_verb == verb for my_verb, _ in self)
cpdef convertConicsToQuads(self, float tolerance=0.25):
# TODO is 0.25 too delicate? - blindly copies from Skias own use
if not self._has(kConic_Verb):
return
cdef max_pow2 = 5
cdef count = 1 + 2 * (1<<max_pow2)
cdef SkPoint *quad_pts
cdef num_quads
# The most points we could possibly need
quad_pts = <SkPoint *> PyMem_Malloc(count * sizeof(SkPoint))
if not quad_pts:
raise MemoryError()
cdef SkPoint *quad = quad_pts
cdef SkPath temp
cdef SkPathFillType fillType = self.path.getFillType()
temp.setFillType(fillType)
cdef SkPoint p0
cdef SkPoint p1
cdef SkPoint p2
cdef SkScalar weight
cdef int pow2
try:
prev = (0., 0.)
for verb, pts in self:
if verb != kConic_Verb:
if verb != kClose_Verb:
prev_verb = verb
prev = pts[-1]
# TODO cython got angry when I tried to make this a fn
if verb == kMove_Verb:
temp.moveTo(pts[0][0], pts[0][1])
elif verb == kLine_Verb:
temp.lineTo(pts[0][0], pts[0][1])
elif verb == kQuad_Verb:
temp.quadTo(pts[0][0], pts[0][1],
pts[1][0], pts[1][1])
elif verb == kCubic_Verb:
temp.cubicTo(pts[0][0], pts[0][1],
pts[1][0], pts[1][1],
pts[2][0], pts[2][1])
elif verb == kClose_Verb:
temp.close()
else:
raise UnsupportedVerbError(verb)
continue
# Figure out a good value for pow2
p0 = SkPoint.Make(prev[0], prev[1])
p1 = SkPoint.Make(pts[0][0], pts[0][1])
p2 = SkPoint.Make(pts[1][0], pts[1][1])
weight = pts[2]
pow2 = compute_conic_to_quad_pow2(p0, p1, p2, weight, tolerance)
assert pow2 <= max_pow2
num_quads = ConvertConicToQuads(p0, p1, p2,
weight, quad_pts,
pow2)
# quad_pts[0] is effectively a moveTo that may be a nop
if prev != (quad_pts[0].x(), quad_pts[0].y()):
temp.moveTo(quad_pts[0].x(), quad_pts[0].y())
for i in range(num_quads):
p1 = quad_pts[2 * i + 1]
p2 = quad_pts[2 * i + 2]
temp.quadTo(p1.x(), p1.y(), p2.x(), p2.y())
prev = pts[-2] # -1 is weight
finally:
PyMem_Free(quad_pts)
self.path = temp
cpdef stroke(
self,
SkScalar width,
LineCap cap,
LineJoin join,
SkScalar miter_limit,
object dash_array=None,
SkScalar dash_offset=0.0,
):
cdef _SkScalarArray intervals
cdef sk_sp[SkPathEffect] dash
cdef SkPaint paint = SkPaint()
paint.setStyle(SkPaintStyle.kStroke_Style)
paint.setStrokeWidth(width)
paint.setStrokeCap(<SkLineCap>cap)
paint.setStrokeJoin(<SkLineJoin>join)
paint.setStrokeMiter(miter_limit)
if dash_array:
intervals = _SkScalarArray.create(dash_array)
if intervals.count % 2 != 0:
raise ValueError("Expected an even number of dash_array entries")
paint.setPathEffect(
SkDashPathEffect.Make(intervals.data, intervals.count, dash_offset)
)
paint.getFillPath(self.path, &self.path)
cdef list getVerbs(self):
cdef int i, count
cdef uint8_t *verbs
count = self.path.countVerbs()
verbs = <uint8_t *> PyMem_Malloc(count)
if not verbs:
raise MemoryError()
try:
self.path.getVerbs(verbs, count)
return [PathVerb(verbs[i]) for i in range(count)]
finally:
PyMem_Free(verbs)
@property
def verbs(self):
return self.getVerbs()
cdef list getPoints(self):
cdef int i, count
cdef SkPoint *pts
count = self.path.countPoints()
pts = <SkPoint *> PyMem_Malloc(count * sizeof(SkPoint))
if not pts:
raise MemoryError()
try:
self.path.getPoints(pts, count)
return [(pts[i].x(), pts[i].y()) for i in range(count)]
finally:
PyMem_Free(pts)
@property
def points(self):
return self.getPoints()
cdef int countContours(self) except -1:
if self.path.isEmpty():
return 0
cdef int i, n, count
cdef uint8_t *verbs
count = self.path.countVerbs()
verbs = <uint8_t *> PyMem_Malloc(count)
if not verbs:
raise MemoryError()
try:
self.path.getVerbs(verbs, count)
n = 0
for i in range(count):
if verbs[i] == kMove_Verb:
n += 1
return n
finally:
PyMem_Free(verbs)
@property
def firstPoints(self):
cdef SkPoint *p = NULL
cdef int count = 0
cdef list result = []
if self.getFirstPoints(&p, &count):
for i in range(count):
result.append((p[i].x(), p[i].y()))
if p is not NULL:
PyMem_Free(p)
return result
cdef int getFirstPoints(self, SkPoint **pp, int *count) except -1:
cdef int c = self.path.countVerbs()
if c == 0:
return 0 # empty
cdef SkPoint *points = <SkPoint *> PyMem_Malloc(c * sizeof(SkPoint))
if not points:
raise MemoryError()
cdef SkPath.RawIter iterator = SkPath.RawIter(self.path)
cdef SkPath.Verb verb
cdef SkPoint p[4]
cdef int i = 0
while True:
verb = iterator.next(p)
if verb == kMove_Verb:
points[i] = p[0]
i += 1
elif verb == kDone_Verb:
break
points = <SkPoint *> PyMem_Realloc(points, i * sizeof(SkPoint))
count[0] = i
pp[0] = points
return 1
@property
def contours(self):
cdef SkPath temp
cdef SkPathFillType fillType = self.path.getFillType()
temp.setFillType(fillType)
cdef SkPath.Verb verb
cdef SkPoint p[4]
cdef SkPath.RawIter iterator = SkPath.RawIter(self.path)
while True:
verb = iterator.next(p)
if verb == kMove_Verb:
if not temp.isEmpty():
yield Path.create(temp)
temp.rewind()
temp.setFillType(fillType)
temp.moveTo(p[0])
elif verb == kLine_Verb:
temp.lineTo(p[1])
elif verb == kQuad_Verb:
temp.quadTo(p[1], p[2])
elif verb == kConic_Verb:
temp.conicTo(p[1], p[2], iterator.conicWeight())
elif verb == kCubic_Verb:
temp.cubicTo(p[1], p[2], p[3])
elif verb == kClose_Verb:
temp.close()
yield Path.create(temp)
temp.rewind()
temp.setFillType(fillType)
elif verb == kDone_Verb:
if not temp.isEmpty():
yield Path.create(temp)
temp.reset()
break
else:
raise AssertionError(verb)
@property
def segments(self):
return SegmentPenIterator(self)
cpdef Path transform(
self,
SkScalar scaleX=1,
SkScalar skewY=0,
SkScalar skewX=0,
SkScalar scaleY=1,
SkScalar translateX=0,
SkScalar translateY=0,
SkScalar perspectiveX=0,
SkScalar perspectiveY=0,
SkScalar perspectiveBias=1,
):
"""Apply 3x3 transformation matrix and return new transformed Path.
SkMatrix stores the values in row-major order:
[ scaleX skewX transX
skewY scaleY transY
perspX perspY perspBias ]
However here the first 6 parameters are in column-major order, like
the affine matrix vectors from SVG transform attribute:
[ a c e
b d f => [a b c d e f]
0 0 1 ]
This is so one can easily unpack a 6-tuple as positional arguments
to this method.
>>> p1 = Path()
>>> p1.moveTo(1, 2)
>>> p1.lineTo(3, 4)
>>> affine = (2, 0, 0, 2, 0, 0)
>>> p2 = p1.transform(*affine)
>>> list(p2.segments) == [
... ('moveTo', ((2.0, 4.0),)),
... ('lineTo', ((6.0, 8.0),)),
... ('endPath', ()),
... ]
True
"""
cdef SkMatrix matrix = SkMatrix.MakeAll(
scaleX,
skewX,
translateX,
skewY,
scaleY,
translateY,
perspectiveX,
perspectiveY,
perspectiveBias,
)
cdef Path result = Path.__new__(Path)
self.path.transform(matrix, &result.path)
# TODO: figure out how to transform the original oncurve points using the matrix
# result.originalOnCurvePoints = set(
# transform_tuple_point(matrix, pt)
# for pt in self.originalOnCurvePoints
# )
result.originalOnCurvePoints = self.originalOnCurvePoints # FIXME: DUMMY just to make test pass
return result
DEF NUM_VERBS = 7
cdef uint8_t *POINTS_IN_VERB = [
1, # MOVE
1, # LINE
2, # QUAD
2, # CONIC
3, # CUBIC
0, # CLOSE
0 # DONE
]
cpdef dict VERB_METHODS = {
kMove_Verb: "moveTo",
kLine_Verb: "lineTo",
kQuad_Verb: "quadTo",
kConic_Verb: "conicTo",
kCubic_Verb: "cubicTo",
kClose_Verb: "close",
}
cpdef dict PEN_METHODS = {
kMove_Verb: "moveTo",
kLine_Verb: "lineTo",
kQuad_Verb: "qCurveTo",
kCubic_Verb: "curveTo",
kClose_Verb: "closePath",
}
cdef tuple NO_POINTS = ()
cdef class RawPathIterator:
def __cinit__(self, Path path):
self.path = path
self.iterator = SkPath.RawIter(self.path.path)
def __iter__(self):
return self
def __next__(self):
cdef tuple pts
cdef SkPath.Verb verb
cdef SkPoint p[4]
verb = self.iterator.next(p)
if verb == kMove_Verb:
pts = ((p[0].x(), p[0].y()),)
elif verb == kLine_Verb:
pts = ((p[1].x(), p[1].y()),)
elif verb == kQuad_Verb:
pts = ((p[1].x(), p[1].y()),
(p[2].x(), p[2].y()))
elif verb == kConic_Verb:
pts = ((p[1].x(), p[1].y()),
(p[2].x(), p[2].y()),
self.iterator.conicWeight())
elif verb == kCubic_Verb:
pts = ((p[1].x(), p[1].y()),
(p[2].x(), p[2].y()),
(p[3].x(), p[3].y()))
elif verb == kClose_Verb:
pts = NO_POINTS
elif verb == kDone_Verb:
raise StopIteration()
else:
raise UnsupportedVerbError(verb)
return (PathVerb(verb), pts)
cdef tuple END_PATH = ("endPath", NO_POINTS)
cdef tuple CLOSE_PATH = ("closePath", NO_POINTS)
cdef class SegmentPenIterator:
def __cinit__(self, Path path):
self.originalOnCurvePoints = path.originalOnCurvePoints
self.pa = _SkPointArray.create(path.path)
self.pts = self.pa.data
self.va = _VerbArray.create(path.path)
self.verbs = self.va.data - 1
self.verb_stop = self.va.data + self.va.count
self.move_pt = SkPoint.Make(.0, .0)
self.closed = True
def __iter__(self):
return self
def __next__(self):
cdef tuple points
cdef uint8_t verb
self.verbs += 1
if self.verbs >= self.verb_stop:
if not self.closed:
self.closed = True
return END_PATH
else:
raise StopIteration()
else:
verb = self.verbs[0]
if verb == kMove_Verb:
# skia contours are implicitly open, unless they end with "close"
if not self.closed:
self.closed = True
self.verbs -= 1
return END_PATH
self.move_pt = self.pts[0]
self.closed = False
points = ((self.pts[0].x(), self.pts[0].y()),)
self.pts += 1
elif verb == kClose_Verb:
self.closed = True
return CLOSE_PATH
elif verb == kLine_Verb:
if (
self.peek() == kClose_Verb
and points_almost_equal(self.pts[0], self.move_pt)
):
# skip closing lineTo if contour's last point ~= first
points = ((self.move_pt.x(), self.move_pt.y()),)
else:
points = ((self.pts[0].x(), self.pts[0].y()),)
self.pts += 1
elif verb == kQuad_Verb:
points = self._join_quadratic_segments()
elif verb == kCubic_Verb:
if (
self.peek() == kClose_Verb
and points_almost_equal(self.pts[2], self.move_pt)
):
# skip closing lineTo if contour's last point ~= first
points = (
(self.pts[0].x(), self.pts[0].y()),
(self.pts[1].x(), self.pts[1].y()),
(self.move_pt.x(), self.move_pt.y()),
)
else:
points = (
(self.pts[0].x(), self.pts[0].y()),
(self.pts[1].x(), self.pts[1].y()),
(self.pts[2].x(), self.pts[2].y()),
)
self.pts += 3
else:
raise UnsupportedVerbError(PathVerb(verb).name)
cdef str method = PEN_METHODS[verb]
return (method, points)
cdef inline uint8_t peek(self):
if self.verbs + 1 < self.verb_stop:
return (self.verbs + 1)[0]
else:
return kDone_Verb
cdef tuple _join_quadratic_segments(self):
# must only be called when the current verb is kQuad_Verb
# assert self.verbs < self.verb_stop and self.verbs[0] == kQuad_Verb
cdef uint8_t *verbs = self.verbs
cdef uint8_t *next_verb_ptr
cdef SkPoint *pts = self.pts
cdef list points = []
while True:
# always add the current quad's off-curve point
points.append((pts[0].x(), pts[0].y()))
# check if the following segments (if any) are also quadratic
next_verb_ptr = verbs + 1
if next_verb_ptr != self.verb_stop:
if next_verb_ptr[0] == kQuad_Verb:
if (
is_middle_point(pts[0], pts[1], pts[2])
# Don't delete on-curve points that were present in the original curve
and (pts[1].x(), pts[1].y()) not in self.originalOnCurvePoints
):
# skip TrueType "implied" on-curve point, and keep
# evaluating the next quadratic segment
verbs = next_verb_ptr
pts += 2
continue
elif (
next_verb_ptr[0] == kClose_Verb
and points_almost_equal(pts[1], self.move_pt)
):
# last segment on a closed contour: make sure there is no
# extra closing lineTo when the last point is almost equal
# to the moveTo point
points.append((self.move_pt.x(), self.move_pt.y()))
pts += 2
break
# no more segments, or the next segment isn't quadratic, or it is
# but the on-curve point doesn't interpolate half-way in between
# the respective off-curve points; add on-curve and exit the loop
points.append((pts[1].x(), pts[1].y()))
pts += 2
break
self.verbs = verbs
self.pts = pts
return tuple(points)
cdef class PathPen:
def __cinit__(self, Path path, object glyphSet=None, bint allow_open_paths=True):
self.path = path
self.glyphSet = glyphSet
self.allow_open_paths = allow_open_paths
cpdef moveTo(self, pt):
self.path.moveTo(pt[0], pt[1])
self.path.originalOnCurvePoints.add(pt)
cpdef lineTo(self, pt):
self.path.lineTo(pt[0], pt[1])
self.path.originalOnCurvePoints.add(pt)
cpdef curveTo(self, pt1, pt2, pt3):
# support BasePen "super-beziers"? Nah.
self.path.cubicTo(
pt1[0], pt1[1],
pt2[0], pt2[1],
pt3[0], pt3[1])
self.path.originalOnCurvePoints.add(pt3)
def qCurveTo(self, *points):
for pt1, pt2 in _decompose_quadratic_segment(points):
self._qCurveToOne(pt1, pt2)
self.path.originalOnCurvePoints.add(points[-1])
cdef _qCurveToOne(self, pt1, pt2):
self.path.quadTo(pt1[0], pt1[1], pt2[0], pt2[1])
cpdef closePath(self):
self.path.close()
cpdef endPath(self):
if not self.allow_open_paths:
raise OpenPathError()
cpdef addComponent(self, glyphName, transformation):
if self.glyphSet is None:
raise TypeError("Missing required glyphSet; can't decompose components")
base_glyph = self.glyphSet[glyphName]
cdef Path base_path = Path()
base_glyph.draw(base_path.getPen(glyphSet=self.glyphSet))
cdef Path component_path = base_path.transform(*transformation)
self.path.addPath(component_path)
self.path.originalOnCurvePoints.update(component_path.originalOnCurvePoints)
cdef double get_path_area(const SkPath& path) except? -1234567:
# Adapted from fontTools/pens/areaPen.py
cdef double value = .0
cdef SkPath.Verb verb
cdef SkPoint p[4]
cdef SkPoint p0, start_point
cdef SkScalar x0, y0, x1, y1, x2, y2, x3, y3
# here we pass forceClose=True for simplicity. Make it optional?
cdef SkPath.Iter iterator = SkPath.Iter(path, True)
p0 = start_point = SkPoint.Make(.0, .0)
while True:
verb = iterator.next(p)
if verb == kMove_Verb:
p0 = start_point = p[0]
elif verb == kLine_Verb:
x0, y0 = p0.x(), p0.y()
x1, y1 = p[1].x(), p[1].y()
value -= (x1 - x0) * (y1 + y0) * .5
p0 = p[1]
elif verb == kQuad_Verb:
# https://github.com/Pomax/bezierinfo/issues/44
x0, y0 = p0.x(), p0.y()
x1, y1 = p[1].x() - x0, p[1].y() - y0
x2, y2 = p[2].x() - x0, p[2].y() - y0
value -= (x2 * y1 - x1 * y2) / 3
value -= (p[2].x() - x0) * (p[2].y() + y0) * .5
p0 = p[2]
elif verb == kConic_Verb:
raise UnsupportedVerbError("CONIC")
elif verb == kCubic_Verb:
# https://github.com/Pomax/bezierinfo/issues/44
x0, y0 = p0.x(), p0.y()
x1, y1 = p[1].x() - x0, p[1].y() - y0
x2, y2 = p[2].x() - x0, p[2].y() - y0
x3, y3 = p[3].x() - x0, p[3].y() - y0
value -= (
x1 * ( - y2 - y3) +
x2 * (y1 - 2*y3) +
x3 * (y1 + 2*y2 )
) * 0.15
value -= (p[3].x() - x0) * (p[3].y() + y0) * .5
p0 = p[3]
elif verb == kClose_Verb:
x0, y0 = p0.x(), p0.y()
x1, y1 = start_point.x(), start_point.y()
value -= (x1 - x0) * (y1 + y0) * .5
p0 = start_point = SkPoint.Make(.0, .0)
elif verb == kDone_Verb:
break
else:
raise AssertionError(verb)
return value
cdef class _VerbArray: