-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpre_processing.py
55 lines (44 loc) · 1.73 KB
/
pre_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pandas as pd
# this is to extract the data from that .tgz file
import tarfile
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
# get all of the data out of that .tgz
yelp_reviews = tarfile.open('data/yelp_review_polarity_csv.tgz')
yelp_reviews.extractall('data')
yelp_reviews.close()
# check out what the data looks like before you get started
# look at the training data set
train_df = pd.read_csv('data/yelp_review_polarity_csv/train.csv', header=None)
print(train_df.head())
# look at the test data set
test_df = pd.read_csv('data/yelp_review_polarity_csv/test.csv', header=None)
print(test_df.head())
# convert training and test data to standard 0 and 1 labels
train_df[0] = (train_df[0] == 2).astype(int)
test_df[0] = (test_df[0] == 2).astype(int)
# look at data after conversion
print(train_df.head())
print(test_df.head())
# format data to match what Bert expects
bert_df = pd.DataFrame({
'id': range(len(train_df)),
'label': train_df[0],
'alpha': ['q']*train_df.shape[0],
'text': train_df[1].replace(r'\n', ' ', regex=True)
})
# split training data into train file and dev file
train_bert_df, dev_bert_df = train_test_split(bert_df, test_size=0.01)
# take a look at the newly formatted data
train_bert_df.head()
# format the test data
test_bert_df = pd.DataFrame({
'id': range(len(test_df)),
'text': test_df[1].replace(r'\n', ' ', regex=True)
})
# look at the formatted test data
test_bert_df.head()
# save train, dev, and test data as tsv files
train_bert_df.to_csv('data/train.tsv', sep='\t', index=False, header=False)
dev_bert_df.to_csv('data/dev.tsv', sep='\t', index=False, header=False)
test_bert_df.to_csv('data/test.tsv', sep='\t', index=False, header=False)