|
| 1 | +#include <cmath> |
| 2 | +#include <common/common.h> |
| 3 | + |
| 4 | +#ifdef __CUDACC__ |
| 5 | +#include <cufinufft/types.h> |
| 6 | +#endif |
| 7 | + |
| 8 | +namespace finufft { |
| 9 | +namespace common { |
| 10 | + |
| 11 | +void gaussquad(int n, double *xgl, double *wgl) { |
| 12 | + // n-node Gauss-Legendre quadrature, adapted from a code by Jason Kaye (2022-2023), |
| 13 | + // from the utils file of https://github.com/flatironinstitute/cppdlr version 1.2, |
| 14 | + // which is Apache-2 licensed. It uses Newton iteration from Chebyshev points. |
| 15 | + // Double-precision only. |
| 16 | + // Adapted by Barnett 6/8/25 to write nodes (xgl) and weights (wgl) into arrays |
| 17 | + // that the user must pre-allocate to length at least n. |
| 18 | + |
| 19 | + double x = 0, dx = 0; |
| 20 | + int convcount = 0; |
| 21 | + |
| 22 | + // Get Gauss-Legendre nodes |
| 23 | + xgl[n / 2] = 0; // If odd number of nodes, middle node is 0 |
| 24 | + for (int i = 0; i < n / 2; i++) { // Loop through nodes |
| 25 | + convcount = 0; |
| 26 | + x = std::cos((2 * i + 1) * PI / (2 * n)); // Initial guess: Chebyshev node |
| 27 | + while (true) { // Newton iteration |
| 28 | + auto [p, dp] = leg_eval(n, x); |
| 29 | + dx = -p / dp; |
| 30 | + x += dx; // Newton step |
| 31 | + if (std::abs(dx) < 1e-14) { |
| 32 | + convcount++; |
| 33 | + } |
| 34 | + if (convcount == 3) { |
| 35 | + break; |
| 36 | + } // If convergence tol hit 3 times, stop |
| 37 | + } |
| 38 | + xgl[i] = -x; |
| 39 | + xgl[n - i - 1] = x; // Symmetric nodes |
| 40 | + } |
| 41 | + |
| 42 | + // Get Gauss-Legendre weights from formula |
| 43 | + // w_i = -2 / ((n+1)*P_n'(x_i)*P_{n+1}(x_i)) (Atkinson '89, pg. 276) |
| 44 | + for (int i = 0; i < n / 2 + 1; i++) { |
| 45 | + auto [junk1, dp] = leg_eval(n, xgl[i]); |
| 46 | + auto [p, junk2] = leg_eval(n + 1, xgl[i]); // This is a bit inefficient, but who |
| 47 | + // cares... |
| 48 | + wgl[i] = -2 / ((n + 1) * dp * p); |
| 49 | + wgl[n - i - 1] = wgl[i]; |
| 50 | + } |
| 51 | +} |
| 52 | + |
| 53 | +std::tuple<double, double> leg_eval(int n, double x) { |
| 54 | + // return Legendre polynomial P_n(x) and its derivative P'_n(x). |
| 55 | + // Uses Legendre three-term recurrence. |
| 56 | + // Used by gaussquad above, with which it shares the same authorship and source. |
| 57 | + |
| 58 | + if (n == 0) { |
| 59 | + return {1.0, 0.0}; |
| 60 | + } |
| 61 | + if (n == 1) { |
| 62 | + return {x, 1.0}; |
| 63 | + } |
| 64 | + // Three-term recurrence and formula for derivative |
| 65 | + double p0 = 0.0, p1 = 1.0, p2 = x; |
| 66 | + for (int i = 1; i < n; i++) { |
| 67 | + p0 = p1; |
| 68 | + p1 = p2; |
| 69 | + p2 = ((2 * i + 1) * x * p1 - i * p0) / (i + 1); |
| 70 | + } |
| 71 | + return {p2, n * (x * p2 - p1) / (x * x - 1)}; |
| 72 | +} |
| 73 | + |
| 74 | +} // namespace common |
| 75 | +} // namespace finufft |
| 76 | + |
| 77 | +namespace cufinufft { |
| 78 | +namespace utils { |
| 79 | + |
| 80 | +long next235beven(long n, long b) |
| 81 | +// finds even integer not less than n, with prime factors no larger than 5 |
| 82 | +// (ie, "smooth") and is a multiple of b (b is a number that the only prime |
| 83 | +// factors are 2,3,5). Adapted from fortran in hellskitchen. Barnett 2/9/17 |
| 84 | +// changed INT64 type 3/28/17. Runtime is around n*1e-11 sec for big n. |
| 85 | +// added condition about b, Melody Shih 05/31/20 |
| 86 | +{ |
| 87 | + if (n <= 2) return 2; |
| 88 | + if (n % 2 == 1) n += 1; // even |
| 89 | + long nplus = n - 2; // to cancel out the +=2 at start of loop |
| 90 | + long numdiv = 2; // a dummy that is >1 |
| 91 | + while ((numdiv > 1) || (nplus % b != 0)) { |
| 92 | + nplus += 2; // stays even |
| 93 | + numdiv = nplus; |
| 94 | + while (numdiv % 2 == 0) numdiv /= 2; // remove all factors of 2,3,5... |
| 95 | + while (numdiv % 3 == 0) numdiv /= 3; |
| 96 | + while (numdiv % 5 == 0) numdiv /= 5; |
| 97 | + } |
| 98 | + return nplus; |
| 99 | +} |
| 100 | + |
| 101 | +} // namespace utils |
| 102 | +} // namespace cufinufft |
0 commit comments