diff --git a/docs/cookbook/nemotron_qa.md b/docs/cookbook/nemotron_qa.md index 126ff11..2cb76c0 100644 --- a/docs/cookbook/nemotron_qa.md +++ b/docs/cookbook/nemotron_qa.md @@ -1,14 +1,14 @@ --- categories: -- Preference Data -description: Learn to implement Nvidia's Preference Data Pipeline with Dria, using - synthetic data generation and reward modeling techniques. +- Synthetic Data +description: Learn to implement Nvidia's Preference Data Pipeline using Dria for synthetic + data generation with Llama 3.1. tags: - Nvidia -- Dria -- Data Pipeline -- Machine Learning - Synthetic Data +- Dria +- AI Pipeline +- Llama 3.1 --- # Implementing Nvidia's Preference Data Pipeline with Dria diff --git a/docs/how-to/data_enrichment.md b/docs/how-to/data_enrichment.md index 753a3a6..4dc08db 100644 --- a/docs/how-to/data_enrichment.md +++ b/docs/how-to/data_enrichment.md @@ -28,11 +28,11 @@ tags: Here's a complete example showing how to analyze the extract summary of a text using Dria: ```python -# Define the schema for translated content +# Define the schema for summarized content class SummarizedContent(BaseModel): summary: str -# Create a prompt with the translation instruction +# Create a prompt with the summary instruction prompter = Prompt( "Summarize the following text in a single concise paragraph:\n\n{{text}}", schema=SummarizedContent @@ -126,7 +126,7 @@ async def enrich(): sentiment: str keywords: str - # Create a prompt with the translation instruction + # Create a prompt with the analysis instruction prompter = Prompt( "Identify the sentiment (positive, negative, or neutral) of the following text and extract keywords:\n\n{{generation}}", schema=AnalyzedText