diff --git a/README.md b/README.md index 972e05c..813d158 100755 --- a/README.md +++ b/README.md @@ -14,3 +14,19 @@ Options to run: * -j Json file of the collection * -f Save image to the folder under the name of collection * -m Run in parallel, value is p for parallel running option, it will check the number of processor the machine has and will utilizes 75% of it. + + +## How to train a binary classification model (AlexNet) +- Copy trainning images to NEG and POS folder +```bash +cd AIDRImageFiltering/ +java -classpath /target/image-filtering-0.0.1-SNAPSHOT.jar hbku.qcri.sc.aidr.filtering.ImageFilteringModel -d toTrain/ -n 100 -b 60 -i 2 -s savedModel +``` + +Options to run: +* -d dataset folder +* -n total number of training images +* -b batch_size +* -i interation +* -l learing rate +* -s save trained model to a folder diff --git a/src/main/java/hbku/qcri/sc/aidr/filtering/ImageFilteringModel.java b/src/main/java/hbku/qcri/sc/aidr/filtering/ImageFilteringModel.java index cfc709a..2e01e2f 100755 --- a/src/main/java/hbku/qcri/sc/aidr/filtering/ImageFilteringModel.java +++ b/src/main/java/hbku/qcri/sc/aidr/filtering/ImageFilteringModel.java @@ -77,7 +77,7 @@ public void run(String[] args) throws Exception { options.addOption("n", "num_examples", true, "Number of examples"); options.addOption("b", "batch_size", true, "batch_size"); options.addOption("i", "iterations", true, "interation"); - options.addOption("l", "iterations", true, "learing rate"); + options.addOption("l", "l_rate", true, "learing rate"); options.addOption("s", "saved_model", true, "saved_models"); CommandLine commandLine = parser.parse(options, args);