-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_synthethic_angiogram.py
178 lines (138 loc) · 5.33 KB
/
generate_synthethic_angiogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import matplotlib.pyplot as plt
import vtk
import synthetic_artery as syn
import carm_simulation as carm
import sys
import os
import argparse
### MAin artery segments:
ca_relations = [
'LMm',
'L1p',
'L1m',
'L2m',
'L3m',
'L4p',
'L4m',
'C1p',
'C1m',
'MRo',
'MRm',
'C2m',
'C3m',
'M1o',
'M1m',
'M2o',
'M2m',
'R1p',
'R1m',
'R2m',
'R3m',
'RDm',
'R4m',
'RIm',
'RPm',
]
def draw_sphere(center, renderer, radii=0.05, color='Tomato', renderer_colors=None):
# create a Sphere"
sphereSource = vtk.vtkSphereSource()
sphereSource.SetCenter(center)
sphereSource.SetRadius(radii)
# create a mapper
sphereMapper = vtk.vtkPolyDataMapper()
sphereMapper.SetInputConnection(sphereSource.GetOutputPort())
# create an actor
sphereActor = vtk.vtkActor()
sphereActor.SetMapper(sphereMapper)
if renderer_colors is not None:
sphereActor.GetProperty().SetColor(renderer_colors.GetColor3d(color))
# add the actors to the scene
renderer.AddActor(sphereActor)
def render_carm(carm_model, renderer=None, display_render=True):
projection_plane_normal, projection_plane_d, detector_ref = carm_model.get_projection_plane()
rot_mat = carm_model.get_rotation_matrix()
src_position = carm_model.get_source_position()
print('C-Arm model:', src_position, ',', detector_ref)
colors = vtk.vtkNamedColors()
if renderer is None:
renderer = vtk.vtkRenderer()
renderer.SetBackground(0.95,0.95,1.0)
draw_sphere(detector_ref, renderer, radii=1.0, color='Tomato', renderer_colors=colors)
draw_sphere(src_position, renderer, radii=1.0, color='Banana', renderer_colors=colors)
if display_render:
renderWindow = vtk.vtkRenderWindow()
renderWindow.SetWindowName('3D ellipse')
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtk.vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
renderer.ResetCamera()
renderWindow.Render()
renderWindowInteractor.Start()
return renderer
def render_artery(artery_model, renderer=None, display_render=True):
colors = vtk.vtkNamedColors()
if renderer is None:
renderer = vtk.vtkRenderer()
renderer.SetBackground(0.95,0.95,1.0)
pointsArtery = vtk.vtkPoints()
ugridArtery = vtk.vtkUnstructuredGrid()
ugridArtery.Allocate(500)
artery_tree = artery_model.get_artery_tree()
t_i=0
for segment_label in artery_tree.keys():
if (segment_label == 'L_Ostium'): continue
segment = artery_model.get_artery_segment(segment_label)
segment_arc_pos, segment_arc_rel, _ = segment.get_arc()
segment_arc_rel = np.array(segment_arc_rel,dtype=np.int64) + t_i
for relation in segment_arc_rel:
ugridArtery.InsertNextCell(vtk.VTK_QUAD, 4, relation)
for curr_position in segment_arc_pos:
pointsArtery.InsertPoint(t_i, curr_position)
t_i+=1
ugridArtery.SetPoints(pointsArtery)
ugridMapperArtery = vtk.vtkDataSetMapper()
ugridMapperArtery.SetInputData(ugridArtery)
ugridActorArtery = vtk.vtkActor()
ugridActorArtery.SetMapper(ugridMapperArtery)
ugridActorArtery.GetProperty().SetColor(colors.GetColor3d('Red'))
ugridActorArtery.GetProperty().EdgeVisibilityOn()
renderer.AddActor(ugridActorArtery)
if display_render:
renderWindow = vtk.vtkRenderWindow()
renderWindow.SetWindowName('3D ellipse')
renderWindow.AddRenderer(renderer)
renderWindowInteractor = vtk.vtkRenderWindowInteractor()
renderWindowInteractor.SetRenderWindow(renderWindow)
renderer.ResetCamera()
renderer.SetBackground(1, 1, 1)
renderWindow.Render()
renderWindowInteractor.Start()
return renderer
def main():
carm_model = carm.CArm(resolution_x=512, resolution_y=512)
carm_model.set_src2det(111.2)
carm_model.set_src2pat(87.61815646)
carm_model.rot_laorao(np.random.rand()*np.pi)
carm_model.rot_cracau(np.random.rand()*np.pi/4.0)
artery_model = syn.ArteryModel(segment_points_density=1500, radial_resolution=50, random_seed=None, random_positions=True)
artery_tree = artery_model.get_artery_tree()
selected_segment = ca_relations[np.random.randint(0, len(ca_relations))]
print('Selected segment:', selected_segment)
segment_arc_size = artery_tree[selected_segment].get_arc_size()
narrowing_size = int(np.random.rand() * segment_arc_size/2) + segment_arc_size//2
narrowing_init = int(np.random.rand() * (segment_arc_size - narrowing_size))
narrowing_degree = np.random.rand() * 0.5
artery_tree[selected_segment].narrow_diameter(narrowing_init, narrowing_size, narrowing_degree)
plt.subplot(1,2,1)
projection_img = carm_model.project_artery(artery_model, artery_sub_tree='left')
plt.imshow(1.0-projection_img, 'gray')
plt.subplot(1,2,2)
projection_img = carm_model.project_artery(artery_model, artery_sub_tree='right')
plt.imshow(1.0-projection_img, 'gray')
plt.show()
renderer = vtk.vtkRenderer()
render_artery(artery_model, renderer=renderer, display_render=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Synthetic angiogram generator.')
main()