Skip to content

Latest commit

 

History

History
290 lines (234 loc) · 6.53 KB

README.md

File metadata and controls

290 lines (234 loc) · 6.53 KB

🚀 BursaLens - Indonesian Stock Market Prediction & News Analysis

An advanced stock market analysis platform combining deep learning LSTM predictions with real-time news scraping. Built for the Indonesian market (IDX), featuring comprehensive technical analysis, fundamental metrics, and news integration.

✨ Features

🤖 LSTM Stock Prediction

  • Advanced Neural Network Architecture

    • Multi-layer LSTM with dropout layers
    • Sequence-based prediction (30-days lookback)
    • Dynamic feature engineering
    • Robust scaling and preprocessing
    • Early stopping for optimal training
  • Technical Indicators

    • Moving Averages (SMA20, SMA50)
    • Relative Strength Index (RSI)
    • MACD (Moving Average Convergence Divergence)
    • Bollinger Bands
    • Rate of Change (ROC)
    • Volume Analysis
  • Fundamental Analysis

    • Market Capitalization
    • P/E Ratio
    • ROE (Return on Equity)
    • ROA (Return on Assets)
    • Current Ratio
    • Free Cash Flow Growth
    • Dividend Yield
  • Model Performance Metrics

    • MAPE (Mean Absolute Percentage Error)
    • R-squared Score
    • Directional Accuracy
    • RMSE (Root Mean Square Error)
    • Threshold Accuracy

📰 News Integration

  • Real-time news scraping from Liputan6
  • Market sentiment analysis
  • Article categorization
  • Image and media extraction
  • Timestamp standardization

🧠 LSTM Model Architecture

Data Preprocessing

def prepare_data(self, df):
    # Feature Engineering
    features = [
        'Close', 'Returns', 'SMA20', 'SMA50',
        'RSI', 'ROC', 'MACD', 'BB_width',
        'Volume_Ratio'
    ]
    
    # Robust Scaling
    scaled_data = self.scaler.fit_transform(data[features])
    
    # Sequence Creation
    X, y = [], []
    for i in range(self.lookback_period, len(scaled_data)):
        X.append(scaled_data[i-self.lookback_period:i])
        y.append(scaled_data[i, 0])

Model Structure

def create_model(self, input_shape):
    model = Sequential([
        LSTM(units=100, return_sequences=True, input_shape=input_shape),
        Dropout(0.2),
        LSTM(units=70, return_sequences=False),
        Dropout(0.1),
        Dense(units=50),
        Dense(units=1)
    ])
    
    model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
    return model

Technical Indicators

def add_features(self, df):
    # Price Features
    df['Returns'] = df['Close'].pct_change()
    df['SMA20'] = df['Close'].rolling(window=20).mean()
    df['SMA50'] = df['Close'].rolling(window=50).mean()

    # Momentum
    df['RSI'] = ta.momentum.rsi(df['Close'])
    df['ROC'] = ta.momentum.roc(df['Close'])

    # Trend
    df['MACD'] = ta.trend.macd_diff(df['Close'])

    # Volatility
    bollinger = ta.volatility.BollingerBands(df['Close'])
    df['BB_width'] = bollinger.bollinger_hband() - bollinger.bollinger_lband()

    # Volume
    df['Volume_SMA'] = df['Volume'].rolling(window=20).mean()
    df['Volume_Ratio'] = df['Volume'] / df['Volume_SMA']

Prediction Process

def predict_future(self, data, days=30):
    # Prepare recent data
    X = self.prepare_sequence(data)
    
    # Generate predictions
    predictions = []
    current_sequence = X[-1:]
    
    for _ in range(days):
        # Predict next value
        pred = self.model.predict(current_sequence)
        predictions.append(pred[0][0])
        
        # Update sequence for next prediction
        current_sequence = self.update_sequence(current_sequence, pred)
    
    return self.inverse_transform(predictions)

📊 Supported Stocks

Major Indonesian stocks including:

  • BBCA (Bank Central Asia)
  • BBRI (Bank Rakyat Indonesia)
  • BMRI (Bank Mandiri)
  • TLKM (Telkom Indonesia)
  • ASII (Astra International)
  • UNVR (Unilever Indonesia)
  • And many more...

🌐 API Endpoints

Stock Prediction

Endpoint Method Description
/stock/<symbol> GET Get predictions and analysis

News API

Endpoint Method Description
/news GET Latest market news
/details GET Detailed article content

💻 Frontend Integration

Stock Prediction Component

import { LineChart, Line, XAxis, YAxis, Tooltip } from 'recharts';

const StockChart = ({ historicalData, predictions }) => {
  return (
    <div className="w-full h-96">
      <LineChart data={[...historicalData, ...predictions]}>
        <Line type="monotone" dataKey="price" stroke="#8884d8" />
        <Line type="monotone" dataKey="prediction" stroke="#82ca9d" />
        <XAxis dataKey="date" />
        <YAxis />
        <Tooltip />
      </LineChart>
    </div>
  );
};

🚀 Docker Deployment

docker-compose.yml

version: '3.8'
services:
  backend:
    build: ./backend
    ports:
      - "5000:5000"
    volumes:
      - ./backend:/app
    environment:
      - FLASK_ENV=production

📊 Model Performance

The LSTM model is evaluated using multiple metrics:

  • MAPE: Typically 2-5% for short-term predictions
  • Directional Accuracy: 40-50%
  • R-squared Score: 77-84%

🛠️ Technical Requirements

Backend

  • Python 3.8+
  • TensorFlow 2.x
  • Flask
  • pandas
  • numpy
  • scikit-learn
  • BeautifulSoup4
  • yfinance

Frontend

  • Node.js 16+
  • Next.js 13+
  • TypeScript
  • Tailwind CSS
  • Recharts
  • Font Awesome

🚀 Getting Started

Local Development

  1. Clone and Setup
git clone https://github.com/yourusername/bursalens.git
cd bursalens
  1. Backend
cd backend
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python app.py
  1. Frontend
cd frontend
npm install
npm run dev

AWS EC2 Deployment

  1. Instance Setup
sudo yum update -y
sudo yum install -y docker
sudo service docker start
  1. Application Deployment
docker-compose up -d

🔄 Maintenance

Model Retraining

  • Automated daily data collection
  • Weekly model retraining
  • Performance monitoring
  • Hyperparameter optimization

News Updates

  • Real-time scraping
  • Hourly content refresh
  • Daily archives

📝 License

MIT License - see LICENSE

👥 Authors

🙏 Acknowledgments


⭐️ Star this repo if you find it helpful!