-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbezier.hpp
167 lines (119 loc) · 3.74 KB
/
bezier.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
Copyright (c) F.I.Diakogiannis 2015
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with popmcmc++. If not, see <http://www.gnu.org/licenses/>.
*/
/* File Description:
Implementation of Bezier functions.
References:
[1] The nurbs book - Piegl & Tiller 2nd edition.
*/
#ifndef _bezier_
#define _bezier_
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include "macros.h"
using namespace std;
class bezier{
private:
int degree; /*! Degree of Bezier polynomial */
vector <double> Bin; /*! Value of Bernstein basis at u: 0 <= u <=1 */
vector <double> coeffs; /*! Coefficients of Bezier functions */
double u_saved; /*! Temporary stored x value, initialize to NAN. Usage: avoide unnecessary function calls */
/*! Based on algorithm A1.3 - p.20 [1]. */
void eval_Bernstein_basis(const int &n, const double &u); /*! Evaluates non zero Bernstein basis of degree n at u \im [0,1] */
public:
bezier();
bezier(vector<double> _coeffs);
double get_Binu(const int &i, const double &u); /*! Value Bin(u) */
// double get_DjBinu(const int &j, const int &i, const double &u); /*! Value d^j B_i(x)/ dx^j */
int get_degree(); /*! Returns degree of Bernstein basis */
vector<double> get_coeffs();
double eval(const double &u); /*! Evaluates value of Bezier function at u */
};
bezier:: bezier (vector<double> _coeffs) : coeffs(_coeffs)
{
// Since 0 <= u <= 1, this indicates no evaluation has taken place yet.
u_saved = -1.;
degree=coeffs.size()-1;
}
/*!
Computes all Bernstein polynomials of degree n, at value u: 0 <= u <=1,
and stores them in vector Bin.
*/
void bezier:: eval_Bernstein_basis(const int &n, const double &u){
/*
// Sanity check:
if (u < 0.0 || u >1 ) {
cerr<< "Gave parameter value outside domain of definition for Bernstein basis, aborting ..." <<endl;
cerr<< "Value u:= " << u << endl;
DEBUG (u);
}
*/
// Initialize everything to zero
vector<double> Bin_temp(n+1,0.0);
Bin_temp[0]=1.;
double u1 = 1. - u;
// Temporary variables.
double saved, temp;
for (int j=1; j<=n; ++j)
{
saved = 0.0;
for (int k=0; k<j; ++k)
{
temp = Bin_temp[k];
Bin_temp[k] = saved + u1*temp;
saved = u*temp;
}
Bin_temp[j] = saved;
}
Bin = std::move(Bin_temp);
//Bin = Bin_temp;
}
double bezier:: get_Binu(const int &i, const double &u){
// Sanity check:
if (u < 0.0 || u >1 ) {
cerr<< "Gave parameter value outside domain of definition for Bernstein basis, aborting ..." <<endl;
cerr<< "Value u:= " << u << endl;
DEBUG (u);
}else if (i <0 || i > degree){
cerr<< "Request for evaluation of Bernstein basis out of range: i: in [0,n], aborting ..." <<endl;
cerr<< "Value u:= " << u << endl;
DEBUG (u);
}
if (u == u_saved){
return
Bin[i];
} else {
eval_Bernstein_basis(degree,u);
return
Bin[i];
}
}
int bezier:: get_degree()
{
return
degree;
}
vector<double> bezier::get_coeffs(){
return
coeffs;
}
double bezier:: eval(const double &u){
double tempsum = 0.0;
for(int i=0; i < (int) coeffs.size(); ++i) // Change (int) coeffs.size() --> degree+1
tempsum += coeffs[i] * get_Binu(i, u);
return
tempsum;
}
#endif