-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
49 lines (42 loc) · 1.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
Model module for the LSTM model
"""
import numpy as np
from keras.models import Sequential # type: ignore
from keras.layers import LSTM, Dense, Reshape, Input # type: ignore
class NextImagePredictor(Sequential):
"""
Model class for the LSTM model
"""
def __init__(
self,
X_train: np.ndarray,
y_train: np.ndarray,
) -> None:
"""
Initialize the model
"""
super().__init__()
self.X_train = X_train
self.y_train = y_train
input_shape = X_train.shape[1:]
self.add(Input(shape=input_shape))
self.add(LSTM(128, activation='relu', input_shape=input_shape, return_sequences=True))
self.add(LSTM(64, activation='relu'))
self.add(Dense((28*28), activation='linear'))
self.add(Reshape((28, 28)))
def train(
self,
optimizer: str,
iters: int
) -> None:
"""
Train the model
Args:
- optimizer: str
- iters: int
"""
self.compile(
optimizer=optimizer, loss='mean_squared_error', metrics=['mse']
)
self.fit(self.X_train, self.y_train, epochs=iters)