@@ -174,11 +174,11 @@ def filter(self, coordinates, data, weights=None): # noqa: A003
174
174
"data{}" .format (i ): attach_weights (self .reduction , w )
175
175
for i , w in enumerate (weights )
176
176
}
177
- columns = {"data{}" .format (i ): comp .ravel () for i , comp in enumerate (data )}
177
+ columns = {"data{}" .format (i ): np .ravel (comp ) for i , comp in enumerate (data )}
178
178
columns ["block" ] = labels
179
179
blocked = pd .DataFrame (columns ).groupby ("block" ).aggregate (reduction )
180
180
blocked_data = tuple (
181
- blocked ["data{}" .format (i )]. values . ravel ( ) for i , _ in enumerate (data )
181
+ np . ravel ( blocked ["data{}" .format (i )]) for i , _ in enumerate (data )
182
182
)
183
183
blocked_coords = self ._block_coordinates (coordinates , blocks , labels )
184
184
if len (blocked_data ) == 1 :
@@ -228,7 +228,7 @@ def _block_coordinates(self, coordinates, block_coordinates, labels):
228
228
if self .drop_coords :
229
229
coordinates = coordinates [:2 ]
230
230
coords = {
231
- "coordinate{}" .format (i ): coord .ravel ()
231
+ "coordinate{}" .format (i ): np .ravel (coord )
232
232
for i , coord in enumerate (coordinates )
233
233
}
234
234
coords ["block" ] = labels
@@ -237,7 +237,7 @@ def _block_coordinates(self, coordinates, block_coordinates, labels):
237
237
if self .center_coordinates :
238
238
unique = np .unique (labels )
239
239
for i , block_coord in enumerate (block_coordinates [:2 ]):
240
- grouped ["coordinate{}" .format (i )] = block_coord [unique ]. ravel ( )
240
+ grouped ["coordinate{}" .format (i )] = np . ravel ( block_coord [unique ])
241
241
return tuple (
242
242
grouped ["coordinate{}" .format (i )].values for i in range (len (coordinates ))
243
243
)
@@ -414,23 +414,21 @@ def filter(self, coordinates, data, weights=None): # noqa: A003
414
414
region = self .region ,
415
415
)
416
416
ncomps = len (data )
417
- columns = {"data{}" .format (i ): comp .ravel () for i , comp in enumerate (data )}
417
+ columns = {"data{}" .format (i ): np .ravel (comp ) for i , comp in enumerate (data )}
418
418
columns ["block" ] = labels
419
419
if any (w is None for w in weights ):
420
420
mean , variance = self ._blocked_mean_variance (pd .DataFrame (columns ), ncomps )
421
421
else :
422
422
columns .update (
423
- {"weight{}" .format (i ): comp .ravel () for i , comp in enumerate (weights )}
423
+ {"weight{}" .format (i ): np .ravel (comp ) for i , comp in enumerate (weights )}
424
424
)
425
425
table = pd .DataFrame (columns )
426
426
if self .uncertainty :
427
427
mean , variance = self ._blocked_mean_uncertainty (table , ncomps )
428
428
else :
429
429
mean , variance = self ._blocked_mean_variance_weighted (table , ncomps )
430
- blocked_data = tuple (comp .values .ravel () for comp in mean )
431
- blocked_weights = tuple (
432
- variance_to_weights (var .values .ravel ()) for var in variance
433
- )
430
+ blocked_data = tuple (np .ravel (comp ) for comp in mean )
431
+ blocked_weights = tuple (variance_to_weights (np .ravel (var )) for var in variance )
434
432
blocked_coords = self ._block_coordinates (coordinates , blocks , labels )
435
433
if ncomps == 1 :
436
434
return blocked_coords , blocked_data [0 ], blocked_weights [0 ]
0 commit comments