-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01-overview.py
73 lines (63 loc) · 2.06 KB
/
01-overview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import bs4
from dotenv import load_dotenv
from langchain import hub
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
# from langchain_google_vertexai import ChatVertexAI, VertexAIEmbeddings
def main():
''' load Documents '''
loader = WebBaseLoader(
web_paths=(
"https://lilianweng.github.io/posts/2023-06-23-agent/",
),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=(
"post-content",
"post-title",
"post-header",
)
)
),
)
docs = loader.load()
# split
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splits = text_splitter.split_documents(docs)
# Embed
vectorstore = Chroma.from_documents(
documents=splits,
embedding=GoogleGenerativeAIEmbeddings(model="models/embedding-001"),
# embedding=VertexAIEmbeddings(model_name="text-embedding-005")
)
retriever = vectorstore.as_retriever()
''' Retrival and generation '''
# Prompt
prompt = hub.pull('rlm/rag-prompt')
# LLM
# llm = ChatVertexAI(
# model="gemini-1.5-flash-001",
# temperature=0,
# )
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0,
)
rag_chain = (
dict( # post-processing
context=retriever | (lambda docs: "\n\n".join(doc.page_content for doc in docs)),
question=RunnablePassthrough()
) | prompt | llm | StrOutputParser()
)
# Question
print(rag_chain.invoke("What is Task Decomposition?"))
if __name__ == "__main__":
load_dotenv()
main()