diff --git a/Evaluation_DETR.ipynb b/Evaluation_DETR.ipynb new file mode 100644 index 000000000..da40a0745 --- /dev/null +++ b/Evaluation_DETR.ipynb @@ -0,0 +1,299 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Evaluation_DETR.ipynb", + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "40eerXBw-y1k" + }, + "source": [ + "
\n", + " \n", + " View source on github\n", + " \n", + "\n", + " \n", + " Run in Google Colab\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kVHSajq37ANN" + }, + "source": [ + "## Clone the github repository for the DETR and install other dependencies" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "EFhyWR-3HBeg" + }, + "source": [ + "!git clone https://github.com/facebookresearch/detr.git" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "SEk86t1aHJsr" + }, + "source": [ + "!pip install cython scipy" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "g8-6FklzHNPj" + }, + "source": [ + "!pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lTVVENnG7xfX" + }, + "source": [ + "## Setting up the Directory\n", + "(Either use the following code from the terminal in your wokrspace directory or make the directory in the way shown at the last first)" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uVsrNn1771iW" + }, + "source": [ + "!mkdir path" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "loGV5Zo473hK" + }, + "source": [ + "cd path" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "0FXDs72-74q0" + }, + "source": [ + "!mkdir to" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3vs8-5vn76Ej" + }, + "source": [ + "cd to" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "E9HdTgsH766N" + }, + "source": [ + "!mkdir coco" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "yUgxqsaJ781k" + }, + "source": [ + "cd coco" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HSGYxfEo8SRB" + }, + "source": [ + "Path formed will be in case of google colab : \"/content/path/to/coco\"\n", + "For personal machine: \"./path/to/coco\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Eo5zPVQ27JUT" + }, + "source": [ + "## Preparing the dataset" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "NxxKioTt7NU-" + }, + "source": [ + "!wget http://images.cocodataset.org/zips/train2017.zip" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "sJ8VA8Wy7lYY" + }, + "source": [ + "!wget http://images.cocodataset.org/zips/val2017.zip" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "eaGKEkoF7uCB" + }, + "source": [ + "!wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "2zPz_a368QqN" + }, + "source": [ + "!unzip /content/path/to/coco/train2017.zip\n", + "!unzip /content/path/to/coco/val2017.zip\n", + "!unzip /content/path/to/coco/annotation_trainval2017.zip" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "U9sdUgtR8z0C" + }, + "source": [ + "You can delete the zipped files after unzipping them" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l3l_2lCn88LY" + }, + "source": [ + "Make sure to change the directory back to the cloned repository before running the following command which will be \"/content/detr\" in case of google colab and \"./detr\" in case of your personal machine" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2ANPdttf1ouU" + }, + "source": [ + "## Models provided by Facebook AI:\n", + "1. https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth (FOR DETR-R50)\n", + "\n", + "2. https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-f0fb7ef5.pth (FOR DETR-R50-DC5)\n", + "\n", + "3. https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth (FOR DETR-R101)\n", + "\n", + "4. https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pth FOR DETR_R101-DC5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ortqIgK33U8N" + }, + "source": [ + "For changing the model choosen for evaluation we can change the link below with four of the folowing mentioned above." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "bhwA3pwZJJaY" + }, + "source": [ + "!python main.py --batch_size 2 --no_aux_loss --eval --resume https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth --coco_path /content/path/to/coco" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JqWjRw1b35fK" + }, + "source": [ + "Below is shown how the data should be kept for running the above code" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NRLWle_o30WF" + }, + "source": [ + "![Screenshot from 2021-02-18 18-55-22.png]()" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "AMDCSAAf346K" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file