-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvisualization_of_feature_maps.py
97 lines (90 loc) · 3.17 KB
/
visualization_of_feature_maps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('MNIST_data/',one_hot=True)
train = mnist.test.images
im = np.reshape(train[73],(28,28))
fig = plt.figure(1)
plt.imshow(im,cmap='gray')
plt.axis('off')
plt.savefig('/home/liuyang/1.eps',format='eps',dpi=500)
# In[36]:
#base1
get_ipython().magic('matplotlib inline')
import os
import numpy as np
import pickle as pk
import matplotlib.pyplot as plt
home='/home/liuyang'
def save_(n):
fig = plt.figure(1)
if os.path.isdir(home+'/save/base/%d'%(n)):
f=open('/home/liuyang/save/base/%d/feature_map1.pk'%n,'rb')
fm=np.reshape(pk.load(f),(28,28,32))
f.close()
for i in range(32):
plt.subplot(4,8,i+1)
plt.imshow(fm[:,:,i],cmap='gray')
plt.axis('off')
plt.savefig('/home/liuyang/save/base/%d/fm1.eps'%n,format='eps',dpi=1000)
def save_1(n):
fig = plt.figure(2)
if os.path.isdir(home+'/save/base/%d'%(n)):
f=open('/home/liuyang/save/base/%d/feature_map2.pk'%n,'rb')
fm=np.reshape(pk.load(f),(14,14,64))
f.close()
j=0
for i in range(64):
if (i<=7)|((i>=16)&(i<=23))|((i>=32)&(i<=39))|((i>=48)&(i<=55)):
j+=1
plt.subplot(4,8,j)
plt.imshow(fm[:,:,i],cmap='gray')
plt.axis('off')
plt.savefig('/home/liuyang/save/base/%d/fm21.eps'%n,format='eps',dpi=1000)
def save_2(n):
fig = plt.figure(2)
if os.path.isdir(home+'/save/base/%d'%(n)):
f=open('/home/liuyang/save/base/%d/feature_map2.pk'%n,'rb')
fm=np.reshape(pk.load(f),(14,14,64))
f.close()
for i in range(8):
x=(fm[:,:,i]+fm[:,:,i+16]+fm[:,:,i+32]+fm[:,:,i+48])/10.0
plt.subplot(1,8,i+1)
plt.imshow(x,cmap='gray')
plt.axis('off')
plt.savefig('/home/liuyang/save/base/%d/fm_superposition1.eps'%n,format='eps',dpi=1000)
def save_3(n):
fig = plt.figure(2)
if os.path.isdir(home+'/save/base/%d'%(n)):
f=open('/home/liuyang/save/base/%d/feature_map2.pk'%n,'rb')
fm=np.reshape(pk.load(f),(14,14,64))
f.close()
j=0
for i in range(64):
if ((i>=8)&(i<=15))|((i>=24)&(i<=31))|((i>=40)&(i<=47))|((i>=56)&(i<=63)):
j+=1
plt.subplot(4,8,j)
plt.imshow(fm[:,:,i],cmap='gray')
plt.axis('off')
plt.savefig('/home/liuyang/save/base/%d/fm22.eps'%n,format='eps',dpi=1000)
def save_4(n):
fig = plt.figure(2)
if os.path.isdir(home+'/save/base/%d'%(n)):
f=open('/home/liuyang/save/base/%d/feature_map2.pk'%n,'rb')
fm=np.reshape(pk.load(f),(14,14,64))
f.close()
for i in range(8,16):
x=(fm[:,:,i]+fm[:,:,i+16]+fm[:,:,i+32]+fm[:,:,i+48])/10.0
plt.subplot(1,8,i-7)
plt.imshow(x,cmap='gray')
plt.axis('off')
plt.savefig('/home/liuyang/save/base/%d/fm_superposition2.eps'%n,format='eps',dpi=1000)
# In[37]:
for i in range(1000):
save_(i)
save_1(i)
save_2(i)
save_3(i)
save_4(i)