-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathnanovg.zig
996 lines (856 loc) · 34.4 KB
/
nanovg.zig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
const std = @import("std");
/// Internal implementation, available for custom backends
pub const internal = @import("internal.zig");
/// OpenGL backend provided by default
pub const gl = @import("nanovg_gl.zig");
const Self = @This();
ctx: *internal.Context,
pub const Color = struct {
r: f32,
g: f32,
b: f32,
a: f32,
};
pub const Paint = struct {
xform: [6]f32,
extent: [2]f32,
radius: f32,
feather: f32,
blur: [2]f32,
inner_color: Color,
outer_color: Color,
image: Image,
colormap: Image,
};
pub const Path = struct {
const Verb = enum {
move,
line,
quad,
bezier,
close,
};
verbs: []const Verb,
points: []const f32,
};
pub const Winding = enum(u2) {
none = 0,
ccw = 1, // Winding for solid shapes
cw = 2, // Winding for holes
pub fn solidity(s: Solidity) Winding {
return switch (s) {
.solid => .ccw,
.hole => .cw,
};
}
};
pub const Solidity = enum(u2) {
solid = 1, // CCW
hole = 2, // CW
};
pub const LineCap = enum(u2) {
butt,
round,
square,
};
pub const LineJoin = enum(u2) {
miter,
round,
bevel,
};
pub const TextAlign = struct {
pub const HorizontalAlign = enum(u8) {
left = 1 << 0,
center = 1 << 1,
right = 1 << 2,
_,
};
pub const VerticalAlign = enum(u8) {
top = 1 << 3,
middle = 1 << 4,
bottom = 1 << 5,
baseline = 1 << 6, // Default, align text vertically to baseline.
_,
};
horizontal: HorizontalAlign = .left,
vertical: VerticalAlign = .baseline,
pub fn toInt(text_align: TextAlign) u8 {
return @intFromEnum(text_align.horizontal) | @intFromEnum(text_align.vertical);
}
};
pub const BlendFactor = enum(u8) {
zero,
one,
src_color,
one_minus_src_color,
dst_color,
one_minus_dst_color,
src_alpha,
one_minus_src_alpha,
dst_alpha,
one_minus_dst_alpha,
src_alpha_saturate,
};
pub const CompositeOperation = enum(u8) {
source_over,
source_in,
source_out,
atop,
destination_over,
destination_in,
destination_out,
destination_atop,
lighter,
copy,
xor,
};
pub const CompositeOperationState = struct {
src_rgb: BlendFactor,
dst_rgb: BlendFactor,
src_alpha: BlendFactor,
dst_alpha: BlendFactor,
pub fn initOperation(operation: CompositeOperation) CompositeOperationState {
return switch (operation) {
.source_over => initFactors(.one, .one_minus_src_alpha),
.source_in => initFactors(.dst_alpha, .zero),
.source_out => initFactors(.one_minus_dst_alpha, .zero),
.atop => initFactors(.dst_alpha, .one_minus_src_alpha),
.destination_over => initFactors(.one_minus_dst_alpha, .one),
.destination_in => initFactors(.zero, .src_alpha),
.destination_out => initFactors(.zero, .one_minus_src_alpha),
.destination_atop => initFactors(.one_minus_dst_alpha, .src_alpha),
.lighter => initFactors(.one, .one),
.copy => initFactors(.one, .zero),
.xor => initFactors(.one_minus_dst_alpha, .one_minus_src_alpha),
};
}
pub fn initFactors(sfactor: BlendFactor, dfactor: BlendFactor) CompositeOperationState {
return .{ .src_rgb = sfactor, .dst_rgb = dfactor, .src_alpha = sfactor, .dst_alpha = dfactor };
}
};
pub const GlyphPosition = struct {
str: [*]const u8, // Position of the glyph in the input string.
x: f32, // The x-coordinate of the logical glyph position.
minx: f32,
maxx: f32, // The bounds of the glyph shape.
};
pub const TextRow = struct {
text: []const u8,
next: []const u8,
width: f32,
minx: f32,
maxx: f32,
};
pub const Image = struct {
handle: i32,
};
pub const ImageFlags = packed struct {
generate_mipmaps: bool = false, // Generate mipmaps during creation of the image.
repeat_x: bool = false, // Repeat image in X direction.
repeat_y: bool = false, // Repeat image in Y direction.
flip_y: bool = false, // Flips (inverses) image in Y direction when rendered.
premultiplied: bool = false, // Image data has premultiplied alpha.
nearest: bool = false, // Image interpolation is Nearest instead Linear
};
pub const Font = struct {
handle: i32,
};
pub fn deinit(self: Self) void {
self.ctx.deinit();
}
// Begin drawing a new frame
// Calls to nanovg drawing API should be wrapped in nvgBeginFrame() & nvgEndFrame()
// nvgBeginFrame() defines the size of the window to render to in relation currently
// set viewport (i.e. glViewport on GL backends). Device pixel ration allows to
// control the rendering on Hi-DPI devices.
// For example, GLFW returns two dimension for an opened window: window size and
// frame buffer size. In that case you would set windowWidth/Height to the window size
// devicePixelRatio to: frameBufferWidth / windowWidth.
pub fn beginFrame(self: Self, window_width: f32, window_height: f32, device_pixel_ratio: f32) void {
self.ctx.beginFrame(window_width, window_height, device_pixel_ratio);
}
// Cancels drawing the current frame.
pub fn cancelFrame(self: Self) void {
self.ctx.cancelFrame();
}
// Ends drawing flushing remaining render state.
pub fn endFrame(self: Self) void {
self.ctx.endFrame();
}
//
// Composite operation
//
// The composite operations in NanoVG are modeled after HTML Canvas API, and
// the blend func is based on OpenGL (see corresponding manuals for more info).
// The colors in the blending state have premultiplied alpha.
// Sets the composite operation. The op parameter should be one of NVGcompositeOperation.
pub fn globalCompositeOperation(self: Self, op: CompositeOperation) void {
self.ctx.getState().composite_operation = CompositeOperationState.initOperation(op);
}
// Sets the composite operation with custom pixel arithmetic. The parameters should be one of NVGblendFactor.
pub fn globalCompositeBlendFunc(self: Self, sfactor: BlendFactor, dfactor: BlendFactor) void {
self.globalCompositeBlendFuncSeparate(sfactor, dfactor, sfactor, dfactor, sfactor);
}
// Sets the composite operation with custom pixel arithmetic for RGB and alpha components separately. The parameters should be one of NVGblendFactor.
pub fn globalCompositeBlendFuncSeparate(self: Self, srcRGB: BlendFactor, dstRGB: BlendFactor, srcAlpha: BlendFactor, dstAlpha: BlendFactor) void {
self.ctx.getState().compositeOperation = .{
.src_rgb = srcRGB,
.dst_rgb = dstRGB,
.src_alpha = srcAlpha,
.dst_alpha = dstAlpha,
};
}
//
// Color utils
//
// Colors in NanoVG are stored as unsigned ints in ABGR format.
// Returns a color value from red, green, blue values. Alpha will be set to 255 (1.0f).
pub fn rgb(r: u8, g: u8, b: u8) Color {
return rgbf(
@as(f32, @floatFromInt(r)) / 255.0,
@as(f32, @floatFromInt(g)) / 255.0,
@as(f32, @floatFromInt(b)) / 255.0,
);
}
// Returns a color value from red, green, blue values. Alpha will be set to 1.0f.
pub fn rgbf(r: f32, g: f32, b: f32) Color {
return rgbaf(r, g, b, 1);
}
// Returns a color value from red, green, blue and alpha values.
pub fn rgba(r: u8, g: u8, b: u8, a: u8) Color {
return rgbaf(
@as(f32, @floatFromInt(r)) / 255.0,
@as(f32, @floatFromInt(g)) / 255.0,
@as(f32, @floatFromInt(b)) / 255.0,
@as(f32, @floatFromInt(a)) / 255.0,
);
}
// Returns a color value from red, green, blue and alpha values.
pub fn rgbaf(r: f32, g: f32, b: f32, a: f32) Color {
return .{ .r = r, .g = g, .b = b, .a = a };
}
// // Linearly interpolates from color c0 to c1, and returns resulting color value.
pub fn lerpRGBA(c0: Color, c1: Color, u: f32) Color {
const a = std.math.clamp(u, 0, 1);
const oma = 1 - a;
return .{
.r = a * c0.r + oma * c1.r,
.g = a * c0.g + oma * c1.g,
.b = a * c0.b + oma * c1.b,
.a = a * c0.a + oma * c1.a,
};
}
// // Sets transparency of a color value.
// NVGcolor nvgTransRGBA(NVGcolor c0, unsigned char a);
pub fn transRGBA(c0: Color, a: u8) Color {
return transRGBAf(c0, @as(f32, @floatFromInt(a)) / 255.0);
}
// // Sets transparency of a color value.
// NVGcolor nvgTransRGBAf(NVGcolor c0, float a);
pub fn transRGBAf(c0: Color, a: f32) Color {
return .{
.r = c0.r,
.g = c0.g,
.b = c0.b,
.a = a,
};
}
// Returns color value specified by hue, saturation and lightness.
// HSL values are all in range [0..1], alpha will be set to 255.
// NVGcolor nvgHSL(float h, float s, float l);
pub fn hsl(hue: f32, sat: f32, lig: f32) Color {
return hsla(hue, sat, lig, 255);
}
// Returns color value specified by hue, saturation and lightness and alpha.
// HSL values are all in range [0..1], alpha in range [0..255]
pub fn hsla(hue: f32, sat: f32, lig: f32, a: u8) Color {
var h = @mod(hue, 1.0);
if (h < 0.0) h += 1.0;
const s = std.math.clamp(sat, 0, 1);
const l = std.math.clamp(lig, 0, 1);
const m2 = if (l <= 0.5) l * (1 + s) else l + s - l * s;
const m1 = 2 * l - m2;
return .{
.r = std.math.clamp(getHue(h + 1.0 / 3.0, m1, m2), 0, 1),
.g = std.math.clamp(getHue(h, m1, m2), 0, 1),
.b = std.math.clamp(getHue(h - 1.0 / 3.0, m1, m2), 0, 1),
.a = @as(f32, @floatFromInt(a)) / 255.0,
};
}
fn getHue(hue: f32, m1: f32, m2: f32) f32 {
var h = hue;
if (h < 0) h += 1;
if (h > 1) h -= 1;
if (h < 1.0 / 6.0) {
return m1 + (m2 - m1) * h * 6.0;
} else if (h < 3.0 / 6.0) {
return m2;
} else if (h < 4.0 / 6.0) {
return m1 + (m2 - m1) * (2.0 / 3.0 - h) * 6.0;
}
return m1;
}
//
// State Handling
//
// NanoVG contains state which represents how paths will be rendered.
// The state contains transform, fill and stroke styles, text and font styles,
// and scissor clipping.
// Pushes and saves the current render state into a state stack.
// A matching nvgRestore() must be used to restore the state.
pub fn save(self: Self) void {
self.ctx.save();
}
// Pops and restores current render state.
pub fn restore(self: Self) void {
self.ctx.restore();
}
// Resets current render state to default values. Does not affect the render state stack.
pub fn reset(self: Self) void {
self.ctx.reset();
}
//
// Render styles
//
// Fill and stroke render style can be either a solid color or a paint which is a gradient or a pattern.
// Solid color is simply defined as a color value, different kinds of paints can be created
// using nvgLinearGradient(), nvgBoxGradient(), nvgRadialGradient() and nvgImagePattern().
//
// Current render style can be saved and restored using nvgSave() and nvgRestore().
// // Sets current stroke style to a solid color.
pub fn strokeColor(self: Self, color: Color) void {
self.ctx.strokeColor(color);
}
// Sets current stroke style to a paint, which can be a one of the gradients or a pattern.
pub fn strokePaint(self: Self, paint: Paint) void {
self.ctx.strokePaint(paint);
}
// Sets current fill style to a solid color.
pub fn fillColor(self: Self, color: Color) void {
self.ctx.fillColor(color);
}
// Sets current fill style to a paint, which can be a one of the gradients or a pattern.
pub fn fillPaint(self: Self, paint: Paint) void {
self.ctx.fillPaint(paint);
}
// Sets the miter limit of the stroke style.
// Miter limit controls when a sharp corner is beveled.
pub fn miterLimit(self: Self, limit: f32) void {
self.ctx.miterLimit(limit);
}
// // Sets the stroke width of the stroke style.
pub fn strokeWidth(self: Self, size: f32) void {
self.ctx.strokeWidth(size);
}
// Sets how the end of the line (cap) is drawn,
// Can be one of: NVG_BUTT (default), NVG_ROUND, NVG_SQUARE.
pub fn lineCap(self: Self, cap: LineCap) void {
self.ctx.lineCap(cap);
}
// Sets how sharp path corners are drawn.
// Can be one of NVG_MITER (default), NVG_ROUND, NVG_BEVEL.
pub fn lineJoin(self: Self, join: LineJoin) void {
self.ctx.lineJoin(join);
}
// Sets the transparency applied to all rendered shapes.
// Already transparent paths will get proportionally more transparent as well.
pub fn globalAlpha(self: Self, alpha: f32) void {
self.ctx.globalAlpha(alpha);
}
//
// Transforms
//
// The paths, gradients, patterns and scissor region are transformed by an transformation
// matrix at the time when they are passed to the API.
// The current transformation matrix is a affine matrix:
// [sx kx tx]
// [ky sy ty]
// [ 0 0 1]
// Where: sx,sy define scaling, kx,ky skewing, and tx,ty translation.
// The last row is assumed to be 0,0,1 and is not stored.
//
// Apart from nvgResetTransform(), each transformation function first creates
// specific transformation matrix and pre-multiplies the current transformation by it.
//
// Current coordinate system (transformation) can be saved and restored using nvgSave() and nvgRestore().
// Resets current transform to a identity matrix.
pub fn resetTransform(self: Self) void {
self.ctx.resetTransform();
}
// Premultiplies current coordinate system by specified matrix.
// The parameters are interpreted as matrix as follows:
// [a c e]
// [b d f]
// [0 0 1]
pub fn transform(self: Self, a: f32, b: f32, c: f32, d: f32, e: f32, f: f32) void {
self.ctx.transform(a, b, c, d, e, f);
}
// Translates current coordinate system.
pub fn translate(self: Self, x: f32, y: f32) void {
self.ctx.translate(x, y);
}
// Rotates current coordinate system. Angle is specified in radians.
pub fn rotate(self: Self, angle: f32) void {
self.ctx.rotate(angle);
}
// Skews the current coordinate system along X axis. Angle is specified in radians.
pub fn skewX(self: Self, angle: f32) void {
self.ctx.skewX(angle);
}
// Skews the current coordinate system along Y axis. Angle is specified in radians.
pub fn skewY(self: Self, angle: f32) void {
self.ctx.skewY(angle);
}
// Scales the current coordinate system.
pub fn scale(self: Self, x: f32, y: f32) void {
self.ctx.scale(x, y);
}
// Stores the top part (a-f) of the current transformation matrix in to the specified buffer.
// [a c e]
// [b d f]
// [0 0 1]
// There should be space for 6 floats in the return buffer for the values a-f.
pub fn currentTransform(self: Self, xform: *[6]f32) void {
self.ctx.currentTransform(xform);
}
// The following functions can be used to make calculations on 2x3 transformation matrices.
// A 2x3 matrix is represented as float[6].
// Sets the transform to identity matrix.
pub fn transformIdentity(t: *[6]f32) void {
t[0] = 1;
t[1] = 0;
t[2] = 0;
t[3] = 1;
t[4] = 0;
t[5] = 0;
}
// Sets the transform to translation matrix matrix.
pub fn transformTranslate(dst: *[6]f32, tx: f32, ty: f32) void {
const t = dst;
t[0] = 1;
t[1] = 0;
t[2] = 0;
t[3] = 1;
t[4] = tx;
t[5] = ty;
}
// Sets the transform to scale matrix.
pub fn transformScale(dst: *[6]f32, sx: f32, sy: f32) void {
const t = dst;
t[0] = sx;
t[1] = 0;
t[2] = 0;
t[3] = sy;
t[4] = 0;
t[5] = 0;
}
// Sets the transform to rotate matrix. Angle is specified in radians.
pub fn transformRotate(dst: *[6]f32, a: f32) void {
const t = dst;
const c = @cos(a);
const s = @sin(a);
t[0] = c;
t[1] = s;
t[2] = -s;
t[3] = c;
t[4] = 0;
t[5] = 0;
}
// Sets the transform to skew-x matrix. Angle is specified in radians.
pub fn transformSkewX(dst: *[6]f32, a: f32) void {
const t = dst;
t[0] = 1;
t[1] = 0;
t[2] = @tan(a);
t[3] = 1;
t[4] = 0;
t[5] = 0;
}
// Sets the transform to skew-y matrix. Angle is specified in radians.
pub fn transformSkewY(dst: *[6]f32, a: f32) void {
const t = dst;
t[0] = 1;
t[1] = @tan(a);
t[2] = 0;
t[3] = 1;
t[4] = 0;
t[5] = 0;
}
// Sets the transform to the result of multiplication of two transforms, of A = A*B.
pub fn transformMultiply(dst: *[6]f32, src: *const [6]f32) void {
const t = dst;
const s = src;
const t0 = t[0] * s[0] + t[1] * s[2];
const t2 = t[2] * s[0] + t[3] * s[2];
const t4 = t[4] * s[0] + t[5] * s[2] + s[4];
t[1] = t[0] * s[1] + t[1] * s[3];
t[3] = t[2] * s[1] + t[3] * s[3];
t[5] = t[4] * s[1] + t[5] * s[3] + s[5];
t[0] = t0;
t[2] = t2;
t[4] = t4;
}
// // Sets the transform to the result of multiplication of two transforms, of A = B*A.
pub fn transformPremultiply(dst: *[6]f32, src: *const [6]f32) void {
const t = dst;
const s = src;
var tmp: [6]f32 = undefined;
@memcpy(&tmp, s);
transformMultiply(&tmp, t);
@memcpy(t, &tmp);
}
// Sets the destination to inverse of specified transform.
// Returns 1 if the inverse could be calculated, else 0.
pub fn transformInverse(dst: *[6]f32, src: *const [6]f32) bool {
const inv = dst;
const t = src;
const det: f64 = t[0] * t[3] - t[2] * t[1];
if (det > -1e-6 and det < 1e-6) {
transformIdentity(inv);
return false;
}
const invdet = 1.0 / det;
inv[0] = @floatCast(t[3] * invdet);
inv[2] = @floatCast(-t[2] * invdet);
inv[4] = @floatCast((t[2] * t[5] - t[3] * t[4]) * invdet);
inv[1] = @floatCast(-t[1] * invdet);
inv[3] = @floatCast(t[0] * invdet);
inv[5] = @floatCast((t[1] * t[4] - t[0] * t[5]) * invdet);
return true;
}
// Transform a point by given transform.
pub fn transformPoint(dstx: *f32, dsty: *f32, xform: *const [6]f32, srcx: f32, srcy: f32) void {
const t = xform;
dstx.* = srcx * t[0] + srcy * t[2] + t[4];
dsty.* = srcx * t[1] + srcy * t[3] + t[5];
}
// Converts degrees to radians and vice versa.
pub fn degToRad(deg: f32) f32 {
return deg / 180.0 * std.math.pi;
}
pub fn radToDeg(rad: f32) f32 {
return rad / std.math.pi * 180.0;
}
//
// Images
//
// NanoVG allows you to load jpg, png, psd, tga, pic and gif files to be used for rendering.
// In addition you can upload your own image. The image loading is provided by stb_image.
// The parameter imageFlags is combination of flags defined in NVGimageFlags.
// // Creates image by loading it from the disk from specified file name.
// // Returns handle to the image.
// pub fn createImage(filename: [:0]const u8, flags: ImageFlags) Image {
// return Image{ .handle = c.nvgCreateImage(ctx, filename.ptr, @bitCast(u6, flags)) };
// }
// Creates image by loading it from the specified chunk of memory.
// Returns handle to the image.
pub fn createImageMem(self: Self, data: []const u8, flags: ImageFlags) Image {
return self.ctx.createImageMem(data, flags);
}
// Creates image from specified image data.
// Returns handle to the image.
pub fn createImageRGBA(self: Self, w: u32, h: u32, flags: ImageFlags, data: ?[]const u8) Image {
return self.ctx.createImageRGBA(w, h, flags, data);
}
// Creates alpha image from specified image data.
// Returns handle to the image.
pub fn createImageAlpha(self: Self, w: u32, h: u32, flags: ImageFlags, data: []const u8) Image {
return self.ctx.createImageAlpha(w, h, flags, data);
}
// Updates image data specified by image handle.
pub fn updateImage(self: Self, image: Image, data: []const u8) void {
self.ctx.updateImage(image, data);
}
// Returns the dimensions of a created image.
pub fn imageSize(self: Self, image: Image, w: *u32, h: *u32) void {
self.ctx.imageSize(image.handle, w, h);
}
// Deletes created image.
pub fn deleteImage(self: Self, image: Image) void {
self.ctx.deleteImage(image.handle);
}
//
// Paints
//
// NanoVG supports four types of paints: linear gradient, box gradient, radial gradient and image pattern.
// These can be used as paints for strokes and fills.
// Creates and returns a linear gradient. Parameters (sx,sy)-(ex,ey) specify the start and end coordinates
// of the linear gradient, icol specifies the start color and ocol the end color.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
pub fn linearGradient(self: Self, sx: f32, sy: f32, ex: f32, ey: f32, icol: Color, ocol: Color) Paint {
return self.ctx.linearGradient(sx, sy, ex, ey, icol, ocol);
}
// Creates and returns a box gradient. Box gradient is a feathered rounded rectangle, it is useful for rendering
// drop shadows or highlights for boxes. Parameters (x,y) define the top-left corner of the rectangle,
// (w,h) define the size of the rectangle, r defines the corner radius, and f feather. Feather defines how blurry
// the border of the rectangle is. Parameter icol specifies the inner color and ocol the outer color of the gradient.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
pub fn boxGradient(self: Self, x: f32, y: f32, w: f32, h: f32, r: f32, f: f32, icol: Color, ocol: Color) Paint {
return self.ctx.boxGradient(x, y, w, h, r, f, icol, ocol);
}
// Creates and returns a radial gradient. Parameters (cx,cy) specify the center, inr and outr specify
// the inner and outer radius of the gradient, icol specifies the start color and ocol the end color.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
pub fn radialGradient(self: Self, cx: f32, cy: f32, inr: f32, outr: f32, icol: Color, ocol: Color) Paint {
return self.ctx.radialGradient(cx, cy, inr, outr, icol, ocol);
}
// Creates and returns an image pattern. Parameters (ox,oy) specify the left-top location of the image pattern,
// (ex,ey) the size of one image, angle rotation around the top-left corner, image is a handle to the image to render.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
pub fn imagePattern(self: Self, ox: f32, oy: f32, ex: f32, ey: f32, angle: f32, image: Image, alpha: f32) Paint {
return self.ctx.imagePattern(ox, oy, ex, ey, angle, image, alpha);
}
// Creates and returns an image pattern.
// (ex,ey) the size of one image. image is a handle to the image to render.
// (blur_x,blur_y) control the blur direction. Only either can be 1.
pub fn imageBlur(self: Self, ex: f32, ey: f32, image: Image, blur_x: f32, blur_y: f32) Paint {
return self.ctx.imageBlur(ex, ey, image, blur_x, blur_y);
}
// Creates and returns an image pattern. Parameters (ox,oy) specify the left-top location of the image pattern,
// (ex,ey) the size of one image, angle rotation around the top-left corner, image is a handle to the image to render.
// The image contains indices into the colormap, which is also a handle to an image and contains up to 256 colors.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
pub fn indexedImagePattern(self: Self, ox: f32, oy: f32, ex: f32, ey: f32, angle: f32, image: Image, colormap: Image, alpha: f32) Paint {
return self.ctx.indexedImagePattern(ox, oy, ex, ey, angle, image, colormap, alpha);
}
//
// Scissoring
//
// Scissoring allows you to clip the rendering into a rectangle. This is useful for various
// user interface cases like rendering a text edit or a timeline.
// Sets the current scissor rectangle.
// The scissor rectangle is transformed by the current transform.
pub fn scissor(self: Self, x: f32, y: f32, w: f32, h: f32) void {
self.ctx.scissor(x, y, w, h);
}
// Intersects current scissor rectangle with the specified rectangle.
// The scissor rectangle is transformed by the current transform.
// Note: in case the rotation of previous scissor rect differs from
// the current one, the intersection will be done between the specified
// rectangle and the previous scissor rectangle transformed in the current
// transform space. The resulting shape is always rectangle.
pub fn intersectScissor(self: Self, x: f32, y: f32, w: f32, h: f32) void {
self.ctx.intersectScissor(x, y, w, h);
}
// Reset and disables scissoring.
pub fn resetScissor(self: Self) void {
self.ctx.resetScissor();
}
//
// Paths
//
// Drawing a new shape starts with nvgBeginPath(), it clears all the currently defined paths.
// Then you define one or more paths and sub-paths which describe the shape. The are functions
// to draw common shapes like rectangles and circles, and lower level step-by-step functions,
// which allow to define a path curve by curve.
//
// NanoVG uses even-odd fill rule to draw the shapes. Solid shapes should have counter clockwise
// winding and holes should have counter clockwise order. To specify winding of a path you can
// call nvgPathWinding(). This is useful especially for the common shapes, which are drawn CCW.
//
// Finally you can fill the path using current fill style by calling nvgFill(), and stroke it
// with current stroke style by calling nvgStroke().
//
// The curve segments and sub-paths are transformed by the current transform.
// Clears the current path and sub-paths.
pub fn beginPath(self: Self) void {
self.ctx.beginPath();
}
// Adds a path consisting of multiple verbs and corresponding point data.
pub fn addPath(self: Self, path: Path) void {
self.ctx.addPath(path);
}
// Starts new sub-path with specified point as first point.
pub fn moveTo(self: Self, x: f32, y: f32) void {
self.ctx.moveTo(x, y);
}
// Adds line segment from the last point in the path to the specified point.
pub fn lineTo(self: Self, x: f32, y: f32) void {
self.ctx.lineTo(x, y);
}
// Adds cubic bezier segment from last point in the path via two control points to the specified point.
pub fn bezierTo(self: Self, c1x: f32, c1y: f32, c2x: f32, c2y: f32, x: f32, y: f32) void {
self.ctx.bezierTo(c1x, c1y, c2x, c2y, x, y);
}
// Adds quadratic bezier segment from last point in the path via a control point to the specified point.
pub fn quadTo(self: Self, cx: f32, cy: f32, x: f32, y: f32) void {
self.ctx.quadTo(cx, cy, x, y);
}
// Adds an arc segment at the corner defined by the last path point, and two specified points.
pub fn arcTo(self: Self, x1: f32, y1: f32, x2: f32, y2: f32, r: f32) void {
self.ctx.arcTo(x1, y1, x2, y2, r);
}
// Closes current sub-path with a line segment.
pub fn closePath(self: Self) void {
self.ctx.closePath();
}
// Sets the current sub-path winding, see NVGwinding and NVGsolidity.
pub fn pathWinding(self: Self, dir: Winding) void {
self.ctx.pathWinding(dir);
}
// Creates new circle arc shaped sub-path. The arc center is at cx,cy, the arc radius is r,
// and the arc is drawn from angle a0 to a1, and swept in direction dir (NVG_CCW, or NVG_CW).
// Angles are specified in radians.
pub fn arc(self: Self, cx: f32, cy: f32, r: f32, a0: f32, a1: f32, dir: Winding) void {
self.ctx.arc(cx, cy, r, a0, a1, dir);
}
// Creates new rectangle shaped sub-path.
pub fn rect(self: Self, x: f32, y: f32, w: f32, h: f32) void {
self.ctx.rect(x, y, w, h);
}
// Creates new rounded rectangle shaped sub-path.
pub fn roundedRect(self: Self, x: f32, y: f32, w: f32, h: f32, r: f32) void {
self.ctx.roundedRect(x, y, w, h, r);
}
// Creates new rounded rectangle shaped sub-path with varying radii for each corner.
pub fn roundedRectVarying(self: Self, x: f32, y: f32, w: f32, h: f32, radTopLeft: f32, radTopRight: f32, radBottomRight: f32, radBottomLeft: f32) void {
self.ctx.roundedRectVarying(x, y, w, h, radTopLeft, radTopRight, radBottomRight, radBottomLeft);
}
// Creates new ellipse shaped sub-path.
pub fn ellipse(self: Self, cx: f32, cy: f32, rx: f32, ry: f32) void {
self.ctx.ellipse(cx, cy, rx, ry);
}
// Creates new circle shaped sub-path.
pub fn circle(self: Self, cx: f32, cy: f32, r: f32) void {
self.ctx.ellipse(cx, cy, r, r);
}
// Use all previously recorded paths since beginPath as clip path.
pub fn clip(self: Self) void {
self.ctx.clip();
}
// Fills the current path with current fill style.
pub fn fill(self: Self) void {
self.ctx.fill();
}
// Fills the current path with current stroke style.
pub fn stroke(self: Self) void {
self.ctx.stroke();
}
//
// Text
//
// NanoVG allows you to load .ttf files and use the font to render text.
//
// The appearance of the text can be defined by setting the current text style
// and by specifying the fill color. Common text and font settings such as
// font size, letter spacing and text align are supported. Font blur allows you
// to create simple text effects such as drop shadows.
//
// At render time the font face can be set based on the font handles or name.
//
// Font measure functions return values in local space, the calculations are
// carried in the same resolution as the final rendering. This is done because
// the text glyph positions are snapped to the nearest pixels sharp rendering.
//
// The local space means that values are not rotated or scale as per the current
// transformation. For example if you set font size to 12, which would mean that
// line height is 16, then regardless of the current scaling and rotation, the
// returned line height is always 16. Some measures may vary because of the scaling
// since aforementioned pixel snapping.
//
// While this may sound a little odd, the setup allows you to always render the
// same way regardless of scaling. I.e. following works regardless of scaling:
//
// const char* txt = "Text me up.";
// nvgTextBounds(vg, x,y, txt, NULL, bounds);
// nvgBeginPath(vg);
// nvgRoundedRect(vg, bounds[0],bounds[1], bounds[2]-bounds[0], bounds[3]-bounds[1]);
// nvgFill(vg);
//
// Note: currently only solid color fill is supported for text.
// // Creates font by loading it from the disk from specified file name.
// // Returns handle to the font.
// pub fn createFont(name: [:0]const u8, filename: [:0]const u8) Font {
// return Font{ .handle = c.nvgCreateFont(ctx, name, filename) };
// }
// // font_index specifies which font face to load from a .ttf/.ttc file.
// pub fn createFontAtIndex(name: [:0]const u8, filename: [:0]const u8, font_index: i32) Font {
// return Font{ .handle = c.nvgCreateFontAtIndex(ctx, name, filename, font_index) };
// }
// Creates font by loading it from the specified memory chunk.
// Returns handle to the font.
pub fn createFontMem(self: Self, name: [:0]const u8, data: []const u8) Font {
return Font{ .handle = self.ctx.createFontMem(name, data) };
}
// // // fontIndex specifies which font face to load from a .ttf/.ttc file.
// // int nvgCreateFontMemAtIndex(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData, const int fontIndex);
// // // Finds a loaded font of specified name, and returns handle to it, or -1 if the font is not found.
// // int nvgFindFont(NVGcontext* ctx, const char* name);
// Adds a fallback font by handle.
pub fn addFallbackFontId(self: Self, base_font: Font, fallback_font: Font) bool {
return self.ctx.addFallbackFontId(base_font, fallback_font);
}
// // Adds a fallback font by name.
// int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont);
// // Resets fallback fonts by handle.
// void nvgResetFallbackFontsId(NVGcontext* ctx, int baseFont);
// // Resets fallback fonts by name.
// void nvgResetFallbackFonts(NVGcontext* ctx, const char* baseFont);
// Sets the font size of current text style.
pub fn fontSize(self: Self, size: f32) void {
self.ctx.fontSize(size);
}
// Sets the blur of current text style.
pub fn fontBlur(self: Self, blur: f32) void {
self.ctx.fontBlur(blur);
}
// Sets the letter spacing of current text style.
pub fn textLetterSpacing(self: Self, spacing: f32) void {
self.ctx.textLetterSpacing(spacing);
}
// Sets the proportional line height of current text style. The line height is specified as multiple of font size.
pub fn textLineHeight(self: Self, line_height: f32) void {
self.ctx.textLineHeight(line_height);
}
// Sets the text align of current text style, see NVGalign for options.
pub fn textAlign(self: Self, text_align: TextAlign) void {
self.ctx.textAlign(text_align);
}
// Sets the font face based on specified id of current text style.
pub fn fontFaceId(self: Self, font: Font) void {
self.ctx.fontFaceId(font);
}
// Sets the font face based on specified name of current text style.
pub fn fontFace(self: Self, font: [:0]const u8) void {
self.ctx.fontFace(font);
}
// Draws text string at specified location. If end is specified only the sub-string up to the end is drawn.
pub fn text(self: Self, x: f32, y: f32, string: []const u8) f32 {
if (string.len == 0) return x;
return self.ctx.text(x, y, string);
}
// Draws multi-line text string at specified location wrapped at the specified width. If end is specified only the sub-string up to the end is drawn.
// White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered.
// Words longer than the max width are slit at nearest character (i.e. no hyphenation).
pub fn textBox(self: Self, x: f32, y: f32, break_row_width: f32, string: []const u8) void {
self.ctx.textBox(x, y, break_row_width, string);
}
// Measures the specified text string. Parameter bounds should be a pointer to float[4],
// if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax]
// Returns the horizontal advance of the measured text (i.e. where the next character should drawn).
// Measured values are returned in local coordinate space.
pub fn textBounds(self: Self, x: f32, y: f32, string: []const u8, bounds: ?*[4]f32) f32 {
return self.ctx.textBounds(x, y, string, bounds);
}
// Measures the specified multi-text string. Parameter bounds should be a pointer to float[4],
// if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax]
// Measured values are returned in local coordinate space.
pub fn textBoxBounds(self: Self, x: f32, y: f32, break_row_width: f32, string: []const u8, bounds: ?*[4]f32) void {
self.ctx.textBoxBounds(x, y, break_row_width, string, bounds);
}
// Calculates the glyph x positions of the specified text. If end is specified only the sub-string will be used.
// Measured values are returned in local coordinate space.
pub fn textGlyphPositions(self: Self, x: f32, y: f32, string: []const u8, positions: []GlyphPosition) usize {
return self.ctx.textGlyphPositions(x, y, string, positions);
}
// Returns the vertical metrics based on the current text style.
// Measured values are returned in local coordinate space.
pub fn textMetrics(self: Self, ascender: ?*f32, descender: ?*f32, line_height: ?*f32) void {
self.ctx.textMetrics(ascender, descender, line_height);
}
// Breaks the specified text into lines. If end is specified only the sub-string will be used.
// White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered.
// Words longer than the max width are slit at nearest character (i.e. no hyphenation).
pub fn textBreakLines(self: Self, string: []const u8, break_row_width: f32, rows: []TextRow) usize {
return self.ctx.textBreakLines(string, break_row_width, rows);
}