-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgausskruger.cpp
105 lines (85 loc) · 5.04 KB
/
gausskruger.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
// Copyright Erik Lundin 2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Version: 1.0.0
#include <cmath>
#include "gausskruger.h"
namespace gausskruger {
void Projection::geodeticToGrid(double latitude, double longitude, double& northing, double& easting)
{
const double e2 = flattening() * (2 - flattening()); // e2: first eccentricity squared
const double n = flattening() / (2 - flattening()); // n: 3rd flattening
const double rectifyingRadius = equatorialRadius() / (1 + n) * (1 + 0.25*pow(n, 2) + 0.015625*pow(n, 4));
double A = e2;
double B = (5 * pow(e2, 2) - pow(e2, 3)) / 6.0;
double C = (104 * pow(e2, 3) - 45 * pow(e2, 4)) / 120.0;
double D = (1237 * pow(e2, 4)) / 1260.0;
// Latitude and longitude are expected to be given in degrees
// phi and lambda: latitude and longitude in radians
double phi = latitude * M_PI / 180;
double lambda = longitude * M_PI / 180;
double lambda0 = centralMeridian() * M_PI / 180;
// deltaLambda: longitude relative to the central meridian
double deltaLambda = lambda - lambda0;
// phiStar: conformal latitude
double phiStar =
phi - sin(phi) * cos(phi) *
(A + B*pow(sin(phi), 2) + C*pow(sin(phi), 4) + D*pow(sin(phi), 6));
double xiPrim = atan(tan(phiStar) / cos(deltaLambda));
double etaPrim = atanh(cos(phiStar) * sin(deltaLambda));
double beta1 = 1/2.0 * n - 2/3.0 * pow(n, 2) + 5/16.0 * pow(n, 3) + 41/180.0 * pow(n, 4);
double beta2 = 13/48.0 * pow(n, 2) - 3/5.0 * pow(n, 3) + 557/1440.0 * pow(n, 4);
double beta3 = 61/240.0 * pow(n, 3) - 103/140.0 * pow(n, 4);
double beta4 = 49561/161280.0 * pow(n, 4);
northing = falseNorthing()
+ scale() * rectifyingRadius * (xiPrim
+ beta1 * sin(2*xiPrim) * cosh(2*etaPrim)
+ beta2 * sin(4*xiPrim) * cosh(4*etaPrim)
+ beta3 * sin(6*xiPrim) * cosh(6*etaPrim)
+ beta4 * sin(8*xiPrim) * cosh(8*etaPrim));
easting = falseEasting()
+ scale() * rectifyingRadius * (etaPrim
+ beta1 * cos(2*xiPrim) * sinh(2*etaPrim)
+ beta2 * cos(4*xiPrim) * sinh(4*etaPrim)
+ beta3 * cos(6*xiPrim) * sinh(6*etaPrim)
+ beta4 * cos(8*xiPrim) * sinh(8*etaPrim));
}
void Projection::gridToGeodetic(double northing, double easting, double& latitude, double& longitude)
{
const double e2 = flattening() * (2 - flattening()); // e2: first eccentricity squared
const double n = flattening() / (2 - flattening()); // n: 3rd flattening
const double rectifyingRadius = equatorialRadius() / (1 + n) * (1 + 0.25*pow(n, 2) + 0.015625*pow(n, 4));
double xi = (northing - falseNorthing()) / (scale() * rectifyingRadius);
double eta = (easting - falseEasting()) / (scale() * rectifyingRadius);
double delta1 = 1/2.0 * n - 2/3.0 * pow(n, 2) + 37/96.0 * pow(n, 3) - 1/360.0 * pow(n, 4);
double delta2 = 1/48.0 * pow(n, 2) + 1/15.0 * pow(n, 3) - 437/1440.0 * pow(n, 4);
double delta3 = 17/480.0 * pow(n, 3) - 37/840.0 * pow(n, 4);
double delta4 = 4397/161280.0 * pow(n, 4);
double xiPrim = xi
- delta1 * sin(2*xi) * cosh(2*eta)
- delta2 * sin(4*xi) * cosh(4*eta)
- delta3 * sin(6*xi) * cosh(6*eta)
- delta4 * sin(8*xi) * cosh(8*eta);
double etaPrim = eta
- delta1 * cos(2*xi) * sinh(2*eta)
- delta2 * cos(4*xi) * sinh(4*eta)
- delta3 * cos(6*xi) * sinh(6*eta)
- delta4 * cos(8*xi) * sinh(8*eta);
double phiStar = asin(sin(xiPrim) / cosh(etaPrim)); // Conformal latitude
double deltaLambda = atan(sinh(etaPrim) / cos(xiPrim));
double AStar = e2 + pow(e2, 2) + pow(e2, 3) + pow(e2, 4);
double BStar = (7 * pow(e2, 2) + 17 * pow(e2, 3) + 30 * pow(e2, 4)) / -6;
double CStar = (224 * pow(e2, 3) + 889 * pow(e2, 4)) / 120;
double DStar = (4279 * pow(e2, 4)) / -1260;
double phi = phiStar
+ sin(phiStar) * cos(phiStar) * ( AStar
+ BStar * pow(sin(phiStar), 2)
+ CStar * pow(sin(phiStar), 4)
+ DStar * pow(sin(phiStar), 6));
// phi: latitude in radians, lambda: longitude in radians
// Return latitude and longitude as degrees
latitude = phi * 180 / M_PI;
longitude = centralMeridian() + deltaLambda * 180 / M_PI;
}
} // namespace gausskruger