-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataexport.py
222 lines (191 loc) · 8.5 KB
/
dataexport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""
This file contains all the methods responsible for saving the generated data in the correct output format.
"""
import numpy as np
import os
import sys
import glob
import logging
from utils import degrees_to_radians
import carla
import math
from numpy.linalg import pinv, inv
from PIL import Image
def save_groundplanes(planes_fname, player, lidar_height):
from math import cos, sin
""" Saves the groundplane vector of the current frame.
The format of the ground plane file is first three lines describing the file (number of parameters).
The next line is the three parameters of the normal vector, and the last is the height of the normal vector,
which is the same as the distance to the camera in meters.
"""
rotation = player.get_transform().rotation
pitch, roll = rotation.pitch, rotation.roll
# Since measurements are in degrees, convert to radians
pitch = degrees_to_radians(pitch)
roll = degrees_to_radians(roll)
# Rotate normal vector (y) wrt. pitch and yaw
normal_vector = [cos(pitch)*sin(roll),
-cos(pitch)*cos(roll),
sin(pitch)
]
normal_vector = map(str, normal_vector)
with open(planes_fname, 'w') as f:
f.write("# Plane\n")
f.write("Width 4\n")
f.write("Height 1\n")
f.write("{} {}\n".format(" ".join(normal_vector), lidar_height))
logging.info("Wrote plane data to %s", planes_fname)
def save_ref_files(OUTPUT_FOLDER, id):
""" Appends the id of the given record to the files """
for name in ['train.txt', 'val.txt', 'trainval.txt']:
path = os.path.join(OUTPUT_FOLDER, name)
with open(path, 'a') as f:
f.write("{0:06}".format(id) + '\n')
logging.info("Wrote reference files to %s", path)
def save_image_data(filename, image):
logging.info("Wrote image data to %s", filename)
image.save_to_disk(filename)
def save_lidar_data(filename, point_cloud, format="bin"):
""" Saves lidar data to given filename, according to the lidar data format.
bin is used for KITTI-data format, while .ply is the regular point cloud format
In Unreal, the coordinate system of the engine is defined as, which is the same as the lidar points
z
^ ^ x
| /
| /
|/____> y
This is a left-handed coordinate system, with x being forward, y to the right and z up
See also https://github.com/carla-simulator/carla/issues/498
However, the lidar coordinate system from KITTI is defined as
z
^ ^ x
| /
| /
y<____|/
Which is a right handed coordinate sylstem
Therefore, we need to flip the y axis of the lidar in order to get the correct lidar format for kitti.
This corresponds to the following changes from Carla to Kitti
Carla: X Y Z
KITTI: X -Y Z
NOTE: We do not flip the coordinate system when saving to .ply.
"""
logging.info("Wrote lidar data to %s", filename)
if format == "bin":
lidar_array = [[point[0], -point[1], point[2], 1.0]
for point in point_cloud]
lidar_array = np.array(lidar_array).astype(np.float32)
logging.debug("Lidar min/max of x: {} {}".format(
lidar_array[:, 0].min(), lidar_array[:, 0].max()))
logging.debug("Lidar min/max of y: {} {}".format(
lidar_array[:, 1].min(), lidar_array[:, 0].max()))
logging.debug("Lidar min/max of z: {} {}".format(
lidar_array[:, 2].min(), lidar_array[:, 0].max()))
lidar_array.tofile(filename)
# point_cloud.save_to_disk(filename)
def save_kitti_data(filename, datapoints):
with open(filename, 'w') as f:
out_str = "\n".join([str(point) for point in datapoints if point])
f.write(out_str)
logging.info("Wrote kitti data to %s", filename)
def save_loc_data(filename, loc,loc_rc):
loc=np.array(loc)
loc_rc=np.array(loc_rc)
ravel_mode = 'C'
def write_flat(f, name, arr):
f.write("{}: {}\n".format(name, ' '.join(
map(str, arr.flatten(ravel_mode).squeeze()))))
with open(filename, 'w') as f:
write_flat(f, "ego_vehicle" , loc)
write_flat(f, "other_vehicle" , loc_rc)
logging.info("Wrote loc data to %s", filename)
def save_loc_data_0(filename, loc):
loc=np.array(loc)
ravel_mode = 'C'
def write_flat(f, name, arr):
f.write("{}: {}\n".format(name, ' '.join(
map(str, arr.flatten(ravel_mode).squeeze()))))
with open(filename, 'w') as f:
write_flat(f, "ego_vehicle" , loc)
logging.info("Wrote loc data to %s", filename)
def save_loc_data_2(filename, loc,loc_r,loc_rc):
loc=np.array(loc)
loc_r=np.array(loc_r)
loc_rc=np.array(loc_rc)
ravel_mode = 'C'
def write_flat(f, name, arr):
f.write("{}: {}\n".format(name, ' '.join(
map(str, arr.flatten(ravel_mode).squeeze()))))
with open(filename, 'w') as f:
write_flat(f, "ego_vehicle" , loc)
write_flat(f, "fore_vehicle" , loc_r)
write_flat(f, "other_vehicle" , loc_rc)
logging.info("Wrote loc data to %s", filename)
def save_calibration_matrices(filename, intrinsic_mat, rt_2,rt_r,rt_rc):
""" Saves the calibration matrices to a file.
AVOD (and KITTI) refers to P as P=K*[R;t], so we will just store P.
The resulting file will contain:
3x4 p0-p3 Camera P matrix. Contains extrinsic
and intrinsic parameters. (P=K*[R;t])
3x3 r0_rect Rectification matrix, required to transform points
from velodyne to camera coordinate frame.
3x4 tr_velodyne_to_cam Used to transform from velodyne to cam
coordinate frame according to:
Point_Camera = P_cam * R0_rect *
Tr_velo_to_cam *
Point_Velodyne.
3x4 tr_imu_to_velo Used to transform from imu to velodyne coordinate frame. This is not needed since we do not export
imu data.
"""
f=1000
k=[[f,0,960,0],[0,f,540,0],[0,0,1,0]]
it=np.array(k)
R_r=np.dot(inv(rt_2),rt_r)
L_r=R_r
R_rc=np.dot(inv(rt_2),rt_rc)
L_rc=R_rc
kitti_to_carla=np.mat([[0,0,1,0],[1,0,0,0],[0,-1,0,0],[0,0,0,1]])
R_r=np.dot(R_r,kitti_to_carla)
R_rc=np.dot(R_rc,kitti_to_carla)
carla_to_kitti=np.mat([[0,1,0,0],[0,0,-1,0],[1,0,0,0],[0,0,0,1]])
R_r=np.dot(carla_to_kitti,R_r)
R_rc=np.dot(carla_to_kitti,R_rc)
ravel_mode = 'C'
P0 = it
P1 = np.dot(it,R_r)
P2 = np.dot(it,R_rc)
R_2_to_r=np.dot(inv(rt_r),rt_2)
R_2_to_r=np.dot(R_2_to_r,kitti_to_carla)
R_2_to_r=np.dot(carla_to_kitti,R_2_to_r)
P_2_to_r = np.dot(it,R_2_to_r)
R_2_to_rc=np.dot(inv(rt_rc),rt_2)
R_2_to_rc=np.dot(R_2_to_rc,kitti_to_carla)
R_2_to_rc=np.dot(carla_to_kitti,R_2_to_rc)
P_2_to_rc = np.dot(it,R_2_to_rc)
R0 = np.identity(3)
vel_to_world = np.mat([[1,0,0,0],[0,-1,0,0],[0,0,1,0],[0,0,0,1]])
vel_ego_to_cam = np.mat([[0,-1,0,0],[0,0,-1,0],[1,0,0,0]])
vel_to_kitti = np.mat([[0,1,0,0],[0,0,-1,0],[1,0,0,0]])
vel_r_to_cam = np.dot(L_r,vel_to_world)
vel_r_to_cam = np.dot(vel_to_kitti,vel_r_to_cam)
vel_rc_to_cam = np.dot(L_rc,vel_to_world)
vel_rc_to_cam = np.dot(vel_to_kitti,vel_rc_to_cam)
TR_imu_to_velo = np.identity(3)
TR_imu_to_velo = np.column_stack((TR_imu_to_velo, np.array([0, 0, 0])))
def write_flat(f, name, arr):
f.write("{}: {}\n".format(name, ' '.join(
map(str, arr.flatten(ravel_mode).squeeze()))))
# All matrices are written on a line with spacing
with open(filename, 'w') as f:
# Avod expects all 4 P-matrices even though we only use the first
write_flat(f, "P0" , P0)
write_flat(f, "P1" , np.array(P1))
write_flat(f, "P2" , np.array(P2))
write_flat(f, "P3" , P0)
write_flat(f, "Pc-r" , np.array(P_2_to_r))
write_flat(f, "Pc-rc" , np.array(P_2_to_rc))
write_flat(f, "R0_rect", R0)
write_flat(f, "Tr_velo_to_cam", np.array(vel_ego_to_cam))
write_flat(f, "Tr_velo_r_to_cam", np.array(vel_r_to_cam))
write_flat(f, "Tr_velo_rc_to_cam", np.array(vel_rc_to_cam))
write_flat(f, "TR_imu_to_velo", TR_imu_to_velo)
logging.info("Wrote all calibration matrices to %s", filename)