|
| 1 | +from typing import Tuple, Callable, Optional, cast |
| 2 | + |
| 3 | +from ..model import Model |
| 4 | +from ..config import registry |
| 5 | +from ..types import Floats2d, Floats1d |
| 6 | +from ..initializers import zero_init |
| 7 | +from ..util import get_width, partial |
| 8 | + |
| 9 | + |
| 10 | +InT = Floats2d |
| 11 | +OutT = Floats2d |
| 12 | + |
| 13 | + |
| 14 | +@registry.layers("Sigmoid.v1") |
| 15 | +def Sigmoid( |
| 16 | + nO: Optional[int] = None, |
| 17 | + nI: Optional[int] = None, |
| 18 | + *, |
| 19 | + init_W: Callable = zero_init, |
| 20 | + init_b: Callable = zero_init |
| 21 | +) -> Model[InT, OutT]: |
| 22 | + """A dense layer, followed by a sigmoid (logistic) activation function. This |
| 23 | + is usually used instead of the Softmax layer as an output for multi-label |
| 24 | + classification. |
| 25 | + """ |
| 26 | + return Model( |
| 27 | + "sigmoid", |
| 28 | + forward, |
| 29 | + init=partial(init, init_W, init_b), |
| 30 | + dims={"nO": nO, "nI": nI}, |
| 31 | + params={"W": None, "b": None}, |
| 32 | + ) |
| 33 | + |
| 34 | + |
| 35 | +def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]: |
| 36 | + W = cast(Floats2d, model.get_param("W")) |
| 37 | + b = cast(Floats1d, model.get_param("b")) |
| 38 | + Y = model.ops.affine(X, W, b) |
| 39 | + Y = model.ops.sigmoid(Y) |
| 40 | + |
| 41 | + def backprop(dY: InT) -> OutT: |
| 42 | + dY = dY * model.ops.dsigmoid(Y, inplace=False) |
| 43 | + model.inc_grad("b", dY.sum(axis=0)) |
| 44 | + model.inc_grad("W", model.ops.gemm(dY, X, trans1=True)) |
| 45 | + return model.ops.gemm(dY, W) |
| 46 | + |
| 47 | + return Y, backprop |
| 48 | + |
| 49 | + |
| 50 | +def init( |
| 51 | + init_W: Callable, |
| 52 | + init_b: Callable, |
| 53 | + model: Model[InT, OutT], |
| 54 | + X: Optional[InT] = None, |
| 55 | + Y: Optional[OutT] = None, |
| 56 | +) -> Model[InT, OutT]: |
| 57 | + if X is not None and model.has_dim("nI") is None: |
| 58 | + model.set_dim("nI", get_width(X)) |
| 59 | + if Y is not None and model.has_dim("nO") is None: |
| 60 | + model.set_dim("nO", get_width(Y)) |
| 61 | + model.set_param("W", init_W(model.ops, (model.get_dim("nO"), model.get_dim("nI")))) |
| 62 | + model.set_param("b", init_b(model.ops, (model.get_dim("nO"),))) |
| 63 | + return model |
0 commit comments