-
-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathlib.rs
274 lines (232 loc) · 7.93 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//! This is the core library where all Cake logic is implemented.
#[macro_use]
extern crate anyhow;
use cake::Mode;
use clap::{Parser, ValueEnum};
use serde::Deserialize;
pub mod cake;
pub mod models;
pub mod utils;
#[derive(Copy, Clone, Parser, Default, Debug, Eq, PartialEq, PartialOrd, Ord, ValueEnum)]
pub enum ModelType {
#[default]
TextModel,
ImageModel,
}
#[derive(Clone, Parser, Default, Debug)]
#[command(author, version, about, long_about = None)]
pub struct Args {
/// GPU device index.
#[arg(long, default_value_t = 0)]
pub device: usize,
/// Mode.
#[arg(long, default_value_t, value_enum)]
pub mode: Mode,
/// Worker name.
#[arg(long)]
pub name: Option<String>,
/// Binding address and port for workers.
#[arg(long, default_value = "127.0.0.1:10128")]
pub address: String,
/// Enable OpenAI compatible chat completion API.
#[arg(long)]
pub api: Option<String>,
/// Llama3 model data path.
#[arg(long, default_value = "./cake-data/Meta-Llama-3-8B/")]
pub model: String,
/// Topology file.
#[arg(long)]
pub topology: Option<String>,
/// The initial prompt.
#[arg(long, default_value = "The sky is blue because ")]
pub prompt: String,
/// The system prompt.
#[arg(long, default_value = "You are a helpful AI assistant.")]
pub system_prompt: String,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
pub seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(short = 'n', long, default_value_t = 100)]
pub sample_len: usize,
/// The temperature used to generate samples.
#[arg(long, default_value_t = 1.0)]
pub temperature: f64,
/// Nucleus sampling probability cutoff.
#[arg(long)]
pub top_p: Option<f64>,
/// Only sample among the top K samples.
#[arg(long)]
pub top_k: Option<usize>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
pub repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 128)]
pub repeat_last_n: usize,
/// Use different dtype than f16
#[arg(long)]
pub dtype: Option<String>,
/// Run on CPU rather than on GPU.
#[arg(long, default_value_t = false)]
pub cpu: bool,
#[arg(long, default_value = "text-model")]
pub model_type: ModelType,
#[clap(flatten)]
pub sd_args: SDArgs,
#[clap(flatten)]
pub sd_img_gen_args: ImageGenerationArgs,
}
#[derive(Clone, Parser, Default, Debug)]
pub struct SDArgs {
#[arg(long = "sd-tokenizer")]
pub tokenizer: Option<String>,
#[arg(long = "sd-tokenizer-2")]
pub tokenizer_2: Option<String>,
#[arg(long = "sd-version", value_enum, default_value = "v1-5")]
sd_version: StableDiffusionVersion,
#[arg(long = "sd-use-f16", default_value_t = true)]
use_f16: bool,
#[arg(long = "sd-width")]
width: Option<usize>,
#[arg(long = "sd-height")]
height: Option<usize>,
#[arg(long = "sd-sliced-attention-size")]
sliced_attention_size: Option<usize>,
#[arg(long = "sd-clip")]
clip: Option<String>,
#[arg(long = "sd-clip2")]
clip2: Option<String>,
#[arg(long = "sd-vae")]
vae: Option<String>,
#[arg(long = "sd-unet")]
unet: Option<String>,
#[arg(long = "sd-use-flash-attention", default_value_t = false)]
use_flash_attention: bool,
}
fn default_prompt() -> String {
"A very realistic photo of a rusty robot walking on a sandy beach".to_string()
}
fn empty_str() -> String {
"".to_string()
}
fn usize_one() -> usize {
1
}
fn default_img2img_strength() -> f64 {
0.8
}
#[derive(Clone, Parser, Default, Debug, Deserialize)]
pub struct ImageGenerationArgs {
/// The prompt to be used for image generation.
#[arg(
long = "sd-image-prompt",
default_value = "A very realistic photo of a rusty robot walking on a sandy beach"
)]
#[serde(rename(deserialize = "sd-image-prompt"), default = "default_prompt")]
image_prompt: String,
#[arg(long = "sd-uncond-prompt", default_value = "")]
#[serde(rename(deserialize = "sd-uncond-prompt"), default = "empty_str")]
uncond_prompt: String,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long = "sd-tracing", default_value_t = false)]
#[serde(rename(deserialize = "sd-tracing"), default)]
tracing: bool,
/// The number of steps to run the diffusion for.
#[arg(long = "sd-n-steps")]
#[serde(rename(deserialize = "sd-n-steps"))]
n_steps: Option<usize>,
/// The number of samples to generate iteratively.
#[arg(long = "sd-num-samples", default_value_t = 1)]
#[serde(rename(deserialize = "sd-num-samples"), default = "usize_one")]
num_samples: usize,
/// The numbers of samples to generate simultaneously.
#[arg(long = "sd-bsize", default_value_t = 1)]
#[serde(rename(deserialize = "sd-bsize"), default = "usize_one")]
bsize: usize,
/// Generate intermediary images every n steps.
#[arg(long = "sd-intermediary-images", default_value_t = 0, action)]
#[serde(rename(deserialize = "sd-intermediary-images"), default)]
intermediary_images: usize,
#[arg(long = "sd-guidance-scale")]
#[serde(rename(deserialize = "sd-guidance-scale"))]
guidance_scale: Option<f64>,
#[arg(long = "sd-img2img", value_name = "FILE")]
#[serde(rename(deserialize = "sd-img2img"))]
img2img: Option<String>,
/// The strength, indicates how much to transform the initial image. The
/// value must be between 0 and 1, a value of 1 discards the initial image
/// information.
#[arg(long = "sd-img2img-strength", default_value_t = 0.8)]
#[serde(
rename(deserialize = "sd-img2img-strength"),
default = "default_img2img_strength"
)]
img2img_strength: f64,
/// The seed to use when generating random samples.
#[arg(long = "sd-seed")]
#[serde(rename(deserialize = "sd-seed"))]
image_seed: Option<u64>,
}
#[derive(Debug, Clone, Copy, clap::ValueEnum, PartialEq, Eq, Default)]
pub enum StableDiffusionVersion {
#[default]
V1_5,
V2_1,
Xl,
Turbo,
}
impl StableDiffusionVersion {
fn repo(&self) -> &'static str {
match self {
Self::Xl => "stabilityai/stable-diffusion-xl-base-1.0",
Self::V2_1 => "stabilityai/stable-diffusion-2-1",
Self::V1_5 => "runwayml/stable-diffusion-v1-5",
Self::Turbo => "stabilityai/sdxl-turbo",
}
}
fn unet_file(&self, use_f16: bool) -> &'static str {
match self {
Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => {
if use_f16 {
"unet/diffusion_pytorch_model.fp16.safetensors"
} else {
"unet/diffusion_pytorch_model.safetensors"
}
}
}
}
fn vae_file(&self, use_f16: bool) -> &'static str {
match self {
Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => {
if use_f16 {
"vae/diffusion_pytorch_model.fp16.safetensors"
} else {
"vae/diffusion_pytorch_model.safetensors"
}
}
}
}
fn clip_file(&self, use_f16: bool) -> &'static str {
match self {
Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => {
if use_f16 {
"text_encoder/model.fp16.safetensors"
} else {
"text_encoder/model.safetensors"
}
}
}
}
fn clip2_file(&self, use_f16: bool) -> &'static str {
match self {
Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => {
if use_f16 {
"text_encoder_2/model.fp16.safetensors"
} else {
"text_encoder_2/model.safetensors"
}
}
}
}
}